// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(op != nullptr); CHECK(ctx != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto y_name = op_info->Input("Y").front(); auto y_type = kernel->GetInputDeclType("Y"); CHECK(y_type->precision() == PRECISION(kFloat)); CHECK(y_type->layout() == DATALAYOUT(kNCHW)); auto y = scope->FindMutableTensor(y_name); auto y_dims = y->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto axis = op_info->GetAttr("axis"); // X node std::shared_ptr x_node = nullptr; if (graph->HasNode(x_name)) { x_node = graph->GetNode(x_name); } else { x_node = graph->AddNode(x_name, x_dims); } // Y node std::shared_ptr y_node = nullptr; if (graph->HasNode(y_name)) { y_node = graph->GetNode(y_name); } else { y_node = graph->AddNode(y_name, y_dims); } // Elementwise node std::shared_ptr elementwise_node = nullptr; if (y_dims.size() == 1) { elementwise_node = graph->AddNode( out_name, graph->builder_.CreateBiasAdd(*x_node, axis, *y_node)); } else if (x_dims.size() == y_dims.size()) { elementwise_node = graph->AddNode( out_name, graph->builder_.CreateBinaryOp("add", *x_node, *y_node)); } else { LOG(WARNING) << "[XPU] elementwise_add only support y of one dimension, or x " "and y of the same dimension. But recieved x's dimension: " << x_dims << ", y's dimension: " << y_dims << ", axis: " << axis; return FAILED; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(XPU, elementwise_add, paddle::lite::subgraph::xpu::ElementwiseConverter);