executor.cpp 25.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
29
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
30

D
dolphin8 已提交
31
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
32 33 34
#include <queue>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
35

L
update  
liuruilong 已提交
36 37 38
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
39 40

namespace paddle_mobile {
41
namespace framework {
42

W
wangliu 已提交
43
using framework::Variable;
L
liuruilong 已提交
44
using framework::Variable;
W
wangliu 已提交
45 46 47 48

#pragma mark - executor

template <typename Dtype, Precision P>
H
hjchen2 已提交
49
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
50
                             const bool use_optimize, const bool loddable)
H
hjchen2 已提交
51 52 53 54
    : program_(p),
      batch_size_(batch_size),
      use_optimize_(use_optimize),
      loddable_(loddable) {
W
wangliu 已提交
55
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
56
  variable_ptr->SetValue<int>(batch_size);
Refine  
陈后江 已提交
57 58
  to_predict_program_ =
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
59 60
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
61
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
62
      to_predict_program_->Blocks();
63 64

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
65 66 67 68 69
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
70
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
71 72 73
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
Refine  
陈后江 已提交
74 75
      // infer shape to reshape tensor before predict,
      // but for lod tensor, it will need to reshape in runtime
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
79 80 81
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
82
  if (program_.combined) {
L
liuruilong 已提交
83 84 85 86
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
87
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
88
      to_predict_program_->Block(0);
Z
zhangyang 已提交
89
  int i = 0;
L
liuruilong 已提交
90
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
91
  for (const auto &op : ops) {
Z
zhangyang 已提交
92
    DLOG << "Initialize op[" << i++ << "]: " << op->Type();
L
liuruilong 已提交
93 94
    op->Init();
  }
W
wangliu 已提交
95 96
}

97
template <typename Dtype>
98 99
static void LoadMemInternal(void **data, framework::LoDTensor *tensor,
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
100
  char **data_buf = reinterpret_cast<char **>(data);
101
  int64_t size = tensor->numel();
102
  Dtype *tensor_data = tensor->mutable_data<Dtype>();
103 104
  if (quant_uint8) {
    // should be moved into operator init function
105 106
    float min_value;
    float max_value;
Z
zhangyang 已提交
107 108
    memory::Copy(&min_value, data_buf, sizeof(float));
    memory::Copy(&max_value, data_buf + sizeof(float), sizeof(float));
109 110
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
111
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(data_buf);
112 113
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
114
    }
115 116
    data_buf += size * sizeof(uint8_t);
  } else {
Z
zhangyang 已提交
117
    memory::Copy(tensor_data, *data_buf, size * sizeof(Dtype));
Refine  
陈后江 已提交
118
    *data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
119
  }
120
}
W
wangliu 已提交
121

122
template <typename Dtype, Precision P>
Refine  
陈后江 已提交
123
void Executor<Dtype, P>::LoadMemory(
124 125 126
    void **data, const std::shared_ptr<framework::VarDesc> var_desc,
    framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
127
  // version
128
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
129
  *data_buf += sizeof(uint32_t);
130
  // lod information
H
hjchen2 已提交
131 132
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
133
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
134
  *data_buf += sizeof(uint64_t);
135 136 137 138

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
139
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
140
    *data_buf += sizeof(uint64_t);
141
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
142
    memory::Copy(tmp_dim.data(), *data_buf, size);
143
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
144
    *data_buf += size;
W
wangliu 已提交
145
  }
146
  // tensor version
147
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
148
  *data_buf += sizeof(uint32_t);
149
  // tensor desc size
150
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
151
  *data_buf += sizeof(int32_t);
152
  // skip tensor desc
Refine  
陈后江 已提交
153
  *data_buf += tensor_desc_size;
154

Refine  
陈后江 已提交
155
  const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc();
156 157 158
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
159
    case framework::VARTYPE_TYPE_FP32:
160 161
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
162
      break;
163
    case framework::VARTYPE_TYPE_INT8:
164
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
165 166
      break;
    case framework::VARTYPE_TYPE_INT32:
167
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
168 169
      break;
    default:
170
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
171
  }
W
wangliu 已提交
172 173 174 175 176 177 178
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
179
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
180 181 182 183
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
184
        char *origin_data =
Refine  
陈后江 已提交
185
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
186
        char *data = origin_data;
187 188
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
189 190
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
191
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
192 193 194 195 196 197
        }
      }
    }
  }
}

L
liuruilong 已提交
198
template <typename Dtype, Precision P>
L
liuruilong 已提交
199
void Executor<Dtype, P>::InitCombineMemory() {
Refine  
陈后江 已提交
200
  char *origin_data = nullptr;
Refine  
陈后江 已提交
201
  bool self_alloc = false;
202
  if (program_.combined_params_buf && program_.combined_params_len) {
203 204
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
205
  } else {
Refine  
陈后江 已提交
206
    self_alloc = true;
Refine  
陈后江 已提交
207
    origin_data = ReadFileToBuff(program_.para_path);
208
  }
Refine  
陈后江 已提交
209 210
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
L
liuruilong 已提交
211 212 213
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
214
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
215 216 217 218
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
219
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
220 221
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
222
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
223 224 225 226
        }
      }
    }
  }
Refine  
陈后江 已提交
227
  if (self_alloc) {
228
    delete[] origin_data;
Refine  
陈后江 已提交
229 230
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
231
}
232

xiebaiyuan's avatar
xiebaiyuan 已提交
233 234 235 236
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
237 238
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
Refine  
陈后江 已提交
239
    case framework::VARTYPE_TYPE_FP32:
240
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
241
      break;
Refine  
陈后江 已提交
242
    case framework::VARTYPE_TYPE_INT8:
243
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
244 245
      break;
    case framework::VARTYPE_TYPE_INT32:
246
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
247
      break;
Refine  
陈后江 已提交
248
    case framework::VARTYPE_TYPE_INT64:
249
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
250
      break;
Refine  
陈后江 已提交
251
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
252 253
      break;
  }
Refine  
陈后江 已提交
254
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
255 256 257
                       (type == framework::VARTYPE_TYPE_INT8) ||
                       (type == framework::VARTYPE_TYPE_INT32) ||
                       (type == framework::VARTYPE_TYPE_INT64);
Refine  
陈后江 已提交
258
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
259 260
  return is_mute_match;
}
L
liuruilong 已提交
261

W
wangliu 已提交
262
template <typename Dtype, Precision P>
W
wangliu 已提交
263 264
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
265 266 267 268 269 270
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
271
      to_predict_program_->Block(0);
D
dolphin8 已提交
272
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
273

D
dolphin8 已提交
274
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
275
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
276
#endif
D
dolphin8 已提交
277
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
278
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
279 280 281 282
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
283
    // to Run
D
dolphin8 已提交
284 285 286 287 288
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
289
  }
W
wangliu 已提交
290 291 292 293 294 295 296
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
297 298 299 300 301
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
302
    _tp[ops[i]->Type()] += timeCost;
D
dolphin8 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
317 318 319
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
320 321 322
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
323
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
324
}
xiebaiyuan's avatar
xiebaiyuan 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
397 398 399 400
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
401 402 403
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
404
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
405 406
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
407
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
L
liuruilong 已提交
408 409
  if (output_tensor != nullptr) {
    Executor<Dtype, P>::Ptype *output_ptr =
L
liuruilong 已提交
410
        output_tensor->data<typename Executor<Dtype, P>::Ptype>();
L
liuruilong 已提交
411 412 413 414 415 416 417 418
    std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
    for (int j = 0; j < output_tensor->numel(); ++j) {
      result_vector.push_back(output_ptr[j]);
    }
    return result_vector;
  } else {
    DLOG << "return  empty vector";
    return {};
W
wangliu 已提交
419
  }
W
wangliu 已提交
420 421
}

422 423
#ifdef PADDLE_MOBILE_FPGA
template <typename Dtype, Precision P>
424
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
H
hjchen2 已提交
425
                                        std::string var_name) {
426
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
427 428 429 430
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
431
}
432

433 434 435
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
436
}
437

438
template <typename Dtype, Precision P>
439
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
440 441 442
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
443

Z
zhangyang 已提交
444 445 446 447 448
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
449 450 451
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
452
}
453 454 455 456 457 458

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
459
  end = end < 0 ? static_cast<int>(ops.size()) : end;
460 461 462 463 464 465 466 467 468 469 470 471
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
472
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
473 474 475 476 477 478 479
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
480
}
481 482 483 484

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
485
}
486 487 488 489

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
490
}
491 492
#endif

Y
yangfei 已提交
493
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
494 495 496 497
template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    float *tensorInput, char **data) {}

Y
yangfei 已提交
498
template <>
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
void Executor<GPU_CL, Precision::FP32>::LoadMemory(
    const framework::VarDesc var_desc, float *tensorInput, char **data) {
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  //            int type_size = 0;
  //            switch (desc.DataType()) {
  //                case framework::VARTYPE_TYPE_FP16:
  //                    type_size = 2;
  //                    break;
  //                case framework::VARTYPE_TYPE_FP32:
  //                    type_size = 4;
  //                    memory = tensor->mutable_data<float>();
  //                    break;
  //                case framework::VARTYPE_TYPE_FP64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT32:
  //                    memory = tensor->mutable_data<int32_t>();
  //                    type_size = 4;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_BOOL:
  //                    type_size = 1;
  //                    break;
  //                default:
  //                    break;
  //            }
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
598

Y
yangfei 已提交
599 600 601 602 603 604
template <>
void Executor<GPU_CL, Precision::FP32>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
605
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
606
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
Z
zhaojiaying01 已提交
607
          var->template GetMutable<framework::LoDTensor>();
Y
yangfei 已提交
608
          continue;
L
liuruilong 已提交
609 610
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
Y
yangfei 已提交
611
        }
L
liuruilong 已提交
612

Y
yangfei 已提交
613
        char *origin_data =
L
liuruilong 已提交
614
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
615
        char *data = origin_data;
Y
yangfei 已提交
616
        cl_context context = program_.scope->GetCLScpoe()->Context();
617 618 619 620 621 622
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
623
        float *tensorInput = static_cast<float *>(
624 625
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
626 627

        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
628

L
liuruilong 已提交
629 630
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
631

632
        delete origin_data;
Y
yangfei 已提交
633
        paddle_mobile::memory::Free(tensorInput);
634 635 636 637
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<framework::CLImage>();
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
638 639
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
640

641
          const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
642 643
          //          framework::DDim ddim = framework::make_ddim(desc.Dims());
          framework::DDim ddim = cl_image->dims();
644
          DLOG << var_desc->Name();
L
liuruilong 已提交
645
          cl_image->InitEmptyImage(context, command_queue, ddim);
646
        }
Y
yangfei 已提交
647 648 649 650
      }
    }
  }
}
651

Y
yangfei 已提交
652 653
template <>
void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
Y
yangfei 已提交
654 655
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
656 657
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
658
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
659 660
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
661
    self_alloc = true;
L
liuruilong 已提交
662
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
663 664
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
665
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
666 667 668 669 670

  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
671
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
672
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
Z
zhaojiaying01 已提交
673
          var->template GetMutable<framework::LoDTensor>();
Y
yangfei 已提交
674
          continue;
L
liuruilong 已提交
675 676
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
Y
yangfei 已提交
677 678 679 680
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

Y
yangfei 已提交
681
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
682
        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
683 684 685 686 687

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
688 689 690
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
691 692 693 694

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

695 696
        paddle_mobile::memory::Free(tensorInput);
      } else {
Y
yangfei 已提交
697 698
        auto cl_image = var->template GetMutable<framework::CLImage>();
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
699 700
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
701
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
702 703
        framework::DDim ddim = cl_image->dims();
        //        framework::DDim ddim = framework::make_ddim(desc.Dims());
L
liuruilong 已提交
704
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
705 706 707
      }
    }
  }
Y
yangfei 已提交
708
  if (self_alloc) {
709
    delete data;
Y
yangfei 已提交
710
  }
Y
yangfei 已提交
711
  LOG(kLOG_INFO) << " end init combine memory ";
712
}
Y
yangfei 已提交
713 714 715

#endif

W
wangliu 已提交
716
template class Executor<CPU, Precision::FP32>;
Y
yangfei 已提交
717

L
liuruilong 已提交
718
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
719

Y
yangfei 已提交
720 721 722 723 724
template class Executor<GPU_CL, Precision::FP32>;

template class Executor<GPU_MALI, Precision::FP32>;

}  // namespace framework
W
wangliu 已提交
725
}  // namespace paddle_mobile