fc_op_test.cc 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/fc_op.h"
#include <gtest/gtest.h>
17 18
#include "lite/backends/npu/bridge/registry.h"
#include "lite/backends/npu/bridge/test_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

void fc_ref(const std::shared_ptr<operators::FcOpLite> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto input =
      scope->FindVar(op_info->Input("Input").front())->GetMutable<Tensor>();
  auto w = scope->FindVar(op_info->Input("W").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  int32_t in_num_col_dims = op_info->GetAttr<int32_t>("in_num_col_dims");
  Tensor* bias = nullptr;
  float* bias_data = nullptr;
  if (op_info->HasInput("Bias")) {
    auto bias_var_names = op_info->Input("Bias");
    if (bias_var_names.size() > 0) {
      auto bias_var_name = bias_var_names.front();
      bias = scope->FindVar(bias_var_name)->GetMutable<lite::Tensor>();
      bias_data = bias->mutable_data<float>();
    }
  }
  auto input_data = input->data<float>();
  auto w_data = w->mutable_data<float>();
  auto out_data = out->mutable_data<float>();
  auto in_mat_dims = input->dims().Flatten2D(in_num_col_dims);
  int out_num_classes = w->dims()[1];
  const int M = in_mat_dims[0];
  const int K = in_mat_dims[1];
  const int N = out_num_classes;
  for (int m = 0; m < M; ++m) {
    for (int n = 0; n < N; ++n) {
      out_data[m * N + n] = 0;
      for (int k = 0; k < K; ++k) {
        out_data[m * N + n] += input_data[m * K + k] * w_data[k * N + n];
      }
    }
  }
  if (bias_data != nullptr) {
    for (int m = 0; m < M; ++m) {
      for (int n = 0; n < N; ++n) {
        out_data[m * N + n] += bias_data[n];
      }
    }
  }
}

void test_fc(const std::vector<int64_t>& x_shape,
             const std::vector<int64_t>& w_shape,
             int in_num_col_dims,
             bool has_bias) {
  CHECK_EQ(w_shape.size(), 2UL);

  const auto& bridges = lite::npu::bridge::Factory::Instance();
  const auto& supported_lists = bridges.AllFunctions();
  CHECK(bridges.HasType("fc"));

  Scope scope;
  std::string x_var_name("Input");
  std::string w_var_name("W");
  std::string bias_var_name("Bias");
  std::string out_var_name("Out");
  std::string out_ref_var_name("out_ref");
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* w = scope.Var(w_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize(x_shape);
  input->Resize({bs, ic, ih, iw});

  // get w shape
  auto in_mat_dims = input->dims().Flatten2D(in_num_col_dims);
  std::vector<int64_t> w_shape = {in_mat_dims[1], out_num_classes};
  w->Resize(w_shape);

  FillTensor<float, int>(x);
  FillTensor<float, int>(w);

  // create fc op
  cpp::OpDesc fc_op_desc;
  fc_op_desc.SetType("fc");
  fc_op_desc.SetInput("Input", {x_var_name});
  fc_op_desc.SetInput("W", {w_var_name});
  fc_op_desc.SetOutput("Out", {out_var_name});
  fc_op_desc.SetAttr("in_num_col_dims", static_cast<int>(in_num_col_dims));
  if (has_bias) {
    auto* bias = scope.Var(bias_var_name)->GetMutable<Tensor>();
    bias->Resize({w_shape[1]});
    FillTensor<float, int>(bias);
    fc_op_desc.SetInput("Bias", {bias_var_name});
  }

  auto fc_op = CreateOp<operators::FcOpLite>(fc_op_desc, &scope);
  LauchOp(fc_op, {x_var_name}, {out_var_name});
  out_ref->CopyDataFrom(*out);

  // compare results
  fc_ref(fc_op);
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5);
  }

  // model release
  npu::OpList::Global().clear();
  npu::DeviceInfo::Global().Clear();
}

TEST(NPUBridges, fc) {
  for (bool use_bias : {true, false}) {
    test_fc({1, 8, 8, 1}, {8, 4}, 2, use_bias);
    test_fc({1, 5, 5, 1}, {5, 7}, 2, use_bias);
    test_fc({1, 4, 1, 1}, {4, 8}, 1, use_bias);
  }
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(fc);
USE_NPU_BRIDGE(fc);