// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/fc_op.h" #include #include "lite/backends/npu/bridge/registry.h" #include "lite/backends/npu/bridge/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace npu { namespace bridge { void fc_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto input = scope->FindVar(op_info->Input("Input").front())->GetMutable(); auto w = scope->FindVar(op_info->Input("W").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); int32_t in_num_col_dims = op_info->GetAttr("in_num_col_dims"); Tensor* bias = nullptr; float* bias_data = nullptr; if (op_info->HasInput("Bias")) { auto bias_var_names = op_info->Input("Bias"); if (bias_var_names.size() > 0) { auto bias_var_name = bias_var_names.front(); bias = scope->FindVar(bias_var_name)->GetMutable(); bias_data = bias->mutable_data(); } } auto input_data = input->data(); auto w_data = w->mutable_data(); auto out_data = out->mutable_data(); auto in_mat_dims = input->dims().Flatten2D(in_num_col_dims); int out_num_classes = w->dims()[1]; const int M = in_mat_dims[0]; const int K = in_mat_dims[1]; const int N = out_num_classes; for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { out_data[m * N + n] = 0; for (int k = 0; k < K; ++k) { out_data[m * N + n] += input_data[m * K + k] * w_data[k * N + n]; } } } if (bias_data != nullptr) { for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { out_data[m * N + n] += bias_data[n]; } } } } void test_fc(const std::vector& x_shape, const std::vector& w_shape, int in_num_col_dims, bool has_bias) { CHECK_EQ(w_shape.size(), 2UL); const auto& bridges = lite::npu::bridge::Factory::Instance(); const auto& supported_lists = bridges.AllFunctions(); CHECK(bridges.HasType("fc")); Scope scope; std::string x_var_name("Input"); std::string w_var_name("W"); std::string bias_var_name("Bias"); std::string out_var_name("Out"); std::string out_ref_var_name("out_ref"); auto* x = scope.Var(x_var_name)->GetMutable(); auto* w = scope.Var(w_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize(x_shape); input->Resize({bs, ic, ih, iw}); // get w shape auto in_mat_dims = input->dims().Flatten2D(in_num_col_dims); std::vector w_shape = {in_mat_dims[1], out_num_classes}; w->Resize(w_shape); FillTensor(x); FillTensor(w); // create fc op cpp::OpDesc fc_op_desc; fc_op_desc.SetType("fc"); fc_op_desc.SetInput("Input", {x_var_name}); fc_op_desc.SetInput("W", {w_var_name}); fc_op_desc.SetOutput("Out", {out_var_name}); fc_op_desc.SetAttr("in_num_col_dims", static_cast(in_num_col_dims)); if (has_bias) { auto* bias = scope.Var(bias_var_name)->GetMutable(); bias->Resize({w_shape[1]}); FillTensor(bias); fc_op_desc.SetInput("Bias", {bias_var_name}); } auto fc_op = CreateOp(fc_op_desc, &scope); LauchOp(fc_op, {x_var_name}, {out_var_name}); out_ref->CopyDataFrom(*out); // compare results fc_ref(fc_op); auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } // model release npu::OpList::Global().clear(); npu::DeviceInfo::Global().Clear(); } TEST(NPUBridges, fc) { for (bool use_bias : {true, false}) { test_fc({1, 8, 8, 1}, {8, 4}, 2, use_bias); test_fc({1, 5, 5, 1}, {5, 7}, 2, use_bias); test_fc({1, 4, 1, 1}, {4, 8}, 1, use_bias); } } } // namespace bridge } // namespace npu } // namespace lite } // namespace paddle USE_LITE_OP(fc); USE_NPU_BRIDGE(fc);