conv_impl.cc 32.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/arm/math/conv_impl.h"
Y
Yan Chunwei 已提交
16
#include <arm_neon.h>
17
#include "lite/backends/arm/math/conv_depthwise.h"
18 19 20 21
#include "lite/backends/arm/math/gemm_prepacked_int8.h"
#include "lite/backends/arm/math/gemv_arm_int8.h"
#include "lite/backends/arm/math/packed_sgemm.h"
#include "lite/backends/arm/math/sgemv.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#include "lite/core/context.h"
#include "lite/core/target_wrapper.h"
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace arm {
namespace math {

/**
 * \brief neon implementation to add bias
 * @param tensor
 * @param bias
 * @param channel
 * @param channel_size
 */
void fill_bias(float* tensor,
               const float* bias,
               int channel,
               int channel_size) {
  if (tensor == nullptr) {
    return;
  }
  float* data = tensor;

  for (int j = 0; j < channel; ++j) {
    float32x4_t vdata = vdupq_n_f32(bias[j]);
    int i = 0;
    for (; i < channel_size - 3; i += 4) {
      vst1q_f32(data + i, vdata);
    }
    for (; i < channel_size; i++) {
      data[i] = bias[j];
    }
    data += channel_size;
  }
}

void fill_bias_int8(int* tensor,
                    const int* bias,
                    int channel,
                    int channel_size) {
  if (tensor == nullptr) {
    return;
  }
  int* data = tensor;
  for (int j = 0; j < channel; ++j) {
    int32x4_t vdata = vdupq_n_s32(bias[j]);
    int i = 0;
    for (; i < channel_size - 3; i += 4) {
      vst1q_s32(data + i, vdata);
    }
    for (; i < channel_size; i++) {
      data[i] = bias[j];
    }
    data += channel_size;
  }
}

/**
 * \brief inline funcs used in im2col
 * @param a
 * @param b
 * @return
 */
inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
  return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}

/**
 * \brief normal im2col function for gemm conv
 * @tparam dtype
 * @param data_im
 * @param channels
 * @param height
 * @param width
 * @param kernel_size
 * @param pad
 * @param stride
 * @param data_col
 */
template <typename Dtype>
void im2col(const Dtype* data_im,
105 106 107 108 109
            int channels,
            int height,
            int width,
            int kernel_h,
            int kernel_w,
H
HappyAngel 已提交
110 111 112 113
            int pad_top,
            int pad_bottom,
            int pad_left,
            int pad_right,
114 115 116 117
            int stride_h,
            int stride_w,
            int dilation_h,
            int dilation_w,
Y
Yan Chunwei 已提交
118 119
            Dtype* data_col) {
  const int output_h =
H
HappyAngel 已提交
120 121 122
      (height + pad_top + pad_bottom - (dilation_h * (kernel_h - 1) + 1)) /
          stride_h +
      1;
Y
Yan Chunwei 已提交
123
  const int output_w =
H
HappyAngel 已提交
124 125 126
      (width + pad_left + pad_right - (dilation_w * (kernel_w - 1) + 1)) /
          stride_w +
      1;
Y
Yan Chunwei 已提交
127 128 129 130
  const int channel_size = height * width;
  for (int channel = channels; channel--; data_im += channel_size) {
    for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
      for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
H
HappyAngel 已提交
131
        int input_row = -pad_top + kernel_row * dilation_h;
Y
Yan Chunwei 已提交
132 133 134 135 136 137
        for (int output_rows = output_h; output_rows; output_rows--) {
          if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
            for (int output_cols = output_w; output_cols; output_cols--) {
              *(data_col++) = 0;
            }
          } else {
H
HappyAngel 已提交
138
            int input_col = -pad_left + kernel_col * dilation_w;
Y
Yan Chunwei 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            for (int output_col = output_w; output_col; output_col--) {
              if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
                *(data_col++) = data_im[input_row * width + input_col];
              } else {
                *(data_col++) = 0;
              }
              input_col += stride_w;
            }
          }
          input_row += stride_h;
        }
      }
    }
  }
}

/**
 * \brief convolution function for kernel size 1x1, stride size 1, gemm
 * implementation
 */
void conv1x1s1_gemm(const float* i_data,
                    float* o_data,
                    int num,
                    int oc,
                    int oh,
                    int ow,
                    int ic,
                    int ih,
                    int win,
                    const float* weights,
                    const float* bias,
                    const operators::ConvParam& param,
171
                    ARMContext* ctx) {
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179 180 181
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;

  const int group = param.groups;
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic / group;

  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
182 183

  int hblock = get_hblock(ctx);
Y
Yan Chunwei 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  int m_roundup = hblock * ((m + hblock - 1) / hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k + 15) / 16) * 16;
  }

  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
      float* dout_group =
          static_cast<float*>(o_data) + (b * oc + g * m) * channel_size_out;
      const float* din_group = static_cast<const float*>(i_data) +
                               (b * ic + g * k) * channel_size_in;
      const float* weights_group =
          static_cast<const float*>(weights) + g * weights_size_per_group;
      const float* bias_group = static_cast<const float*>(bias) + g * m;

      if (n == 1) {
        sgemv(weights_group,
              din_group,
              dout_group,
              false,
              m,
              k,
              flag_bias,
              bias_group,
211 212
              flag_relu,
              ctx);
Y
Yan Chunwei 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      } else {
        sgemm_prepack(false,
                      m,
                      n,
                      k,
                      weights_group,
                      din_group,
                      n,
                      0.f,
                      dout_group,
                      n,
                      bias_group,
                      flag_bias,
                      flag_relu,
                      ctx);
      }
    }
  }
}

233
template <typename Dtype>
Y
Yan Chunwei 已提交
234
void conv1x1s1_gemm_int8(const int8_t* i_data,
235
                         Dtype* o_data,
Y
Yan Chunwei 已提交
236 237 238 239 240 241 242 243
                         int num,
                         int oc,
                         int oh,
                         int ow,
                         int ic,
                         int ih,
                         int win,
                         const int8_t* weights,
244
                         const float* bias,
Y
Yan Chunwei 已提交
245 246
                         const operators::ConvParam& param,
                         ARMContext* ctx,
247
                         const float* scale) {
Y
Yan Chunwei 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  int group = param.groups;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic / group;
  int hblock = get_hblock_int8(ctx);
  int k_roundup = ROUNDUP(k, KBLOCK_INT8);
  int m_roundup = ROUNDUP(m, hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k_roundup + 15) / 16) * 16;
  }
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
267
      Dtype* dout_group = o_data + (b * oc + g * m) * channel_size_out;
Y
Yan Chunwei 已提交
268 269
      const int8_t* din_group = i_data + (b * ic + g * k) * channel_size_in;
      const int8_t* weights_group = weights + g * weights_size_per_group;
270
      const float* bias_group = bias + g * m;
Y
Yan Chunwei 已提交
271 272
      const float* scale_group = scale + g * m;
      if (n == 1) {
273 274 275 276 277 278 279 280 281 282 283
        gemv_int8(weights_group,
                  din_group,
                  dout_group,
                  false,
                  m,
                  k,
                  scale_group,
                  flag_bias,
                  bias_group,
                  flag_relu,
                  ctx);
Y
Yan Chunwei 已提交
284
      } else {
285 286 287 288 289 290 291 292 293 294 295 296
        gemm_prepack_int8(weights_group,
                          din_group,
                          bias_group,
                          dout_group,
                          m,
                          n,
                          k,
                          flag_bias,
                          flag_relu,
                          false,
                          scale_group,
                          ctx);
Y
Yan Chunwei 已提交
297 298 299 300 301
      }
    }
  }
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
template void conv1x1s1_gemm_int8<int8_t>(const int8_t* i_data,
                                          int8_t* o_data,
                                          int num,
                                          int oc,
                                          int oh,
                                          int ow,
                                          int ic,
                                          int ih,
                                          int win,
                                          const int8_t* weights,
                                          const float* bias,
                                          const operators::ConvParam& param,
                                          ARMContext* ctx,
                                          const float* scale);

template void conv1x1s1_gemm_int8<float>(const int8_t* i_data,
                                         float* o_data,
                                         int num,
                                         int oc,
                                         int oh,
                                         int ow,
                                         int ic,
                                         int ih,
                                         int win,
                                         const int8_t* weights,
                                         const float* bias,
                                         const operators::ConvParam& param,
                                         ARMContext* ctx,
                                         const float* scale);

Y
Yan Chunwei 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * \brief convolution function for kernel size 3x3, stride size 2, gemm
 * implementation
 */
void conv_im2col_gemm(const float* i_data,
                      float* o_data,
                      int num,
                      int oc,
                      int oh,
                      int ow,
                      int ic,
                      int ih,
                      int win,
                      const float* weights,
                      const float* bias,
                      const operators::ConvParam& param,
348
                      ARMContext* ctx) {
Y
Yan Chunwei 已提交
349 350 351 352 353 354 355 356 357 358 359 360
  const int group = param.groups;
  auto filter_dims = param.filter->dims();
  const int kernel_h = filter_dims[2];
  const int kernel_w = filter_dims[3];  // nchw
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic * kernel_h * kernel_w / group;
  const int chin_per_group = ic / group;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
361
  int hblock = get_hblock(ctx);
Y
Yan Chunwei 已提交
362 363 364 365 366 367 368 369
  int m_roundup = hblock * ((m + hblock - 1) / hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k + 15) / 16) * 16;
  }

  float* tmp_work_space =
      ctx->workspace_data<float>() + ctx->llc_size() / sizeof(float);
H
HappyAngel 已提交
370 371 372

  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
373 374 375 376 377 378 379 380 381 382 383
  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
      float* dout_group = o_data + (b * oc + g * m) * channel_size_out;
      const float* din_group =
          i_data + (b * ic + g * chin_per_group) * channel_size_in;
      const float* weights_group = weights + g * weights_size_per_group;
      const float* bias_group = bias + g * m;
      float* dB = tmp_work_space;

384 385 386 387 388 389
      im2col(din_group,
             chin_per_group,
             ih,
             win,
             kernel_h,
             kernel_w,
H
HappyAngel 已提交
390 391 392 393
             paddings[0],
             paddings[1],
             paddings[2],
             paddings[3],
394 395
             param.strides[0],
             param.strides[1],
H
HappyAngel 已提交
396 397
             dilations[0],
             dilations[1],
398 399
             dB);

Y
Yan Chunwei 已提交
400 401 402 403 404 405 406 407 408
      if (n == 1) {
        sgemv(weights_group,
              dB,
              dout_group,
              false,
              m,
              k,
              flag_bias,
              bias_group,
409 410
              flag_relu,
              ctx);
Y
Yan Chunwei 已提交
411 412
      } else {
        int ldb = n;
413
        sgemm_prepack(false,
Y
Yan Chunwei 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
                      m,
                      n,
                      k,
                      weights_group,
                      dB,
                      ldb,
                      0.f,
                      dout_group,
                      n,
                      bias_group,
                      flag_bias,
                      flag_relu,
                      ctx);
      }
    }
  }
}

432
template <typename Dtype>
Y
Yan Chunwei 已提交
433
void conv_im2col_gemm_int8(const int8_t* i_data,
434
                           Dtype* o_data,
Y
Yan Chunwei 已提交
435 436 437 438 439 440 441 442
                           int num,
                           int oc,
                           int oh,
                           int ow,
                           int ic,
                           int ih,
                           int win,
                           const int8_t* weights,
443
                           const float* bias,
Y
Yan Chunwei 已提交
444 445
                           const operators::ConvParam& param,
                           ARMContext* ctx,
446
                           const float* scale) {
Y
Yan Chunwei 已提交
447 448
  int group = param.groups;
  auto filter_dims = param.filter->dims();
H
HappyAngel 已提交
449 450
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
451 452 453 454
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
455 456 457 458
  int dila_h = dilations[0];
  int dila_w = dilations[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic * kernel_h * kernel_w / group;
  const int chin_per_group = ic / group;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;

  int hblock = get_hblock_int8(ctx);
  int k_roundup = ROUNDUP(k, KBLOCK_INT8);
  int m_roundup = ROUNDUP(m, hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k_roundup + 15) / 16) * 16;
  }

  int8_t* tmp_work_space =
      ctx->workspace_data<int8_t>() + ctx->llc_size() / sizeof(int8_t);

  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
483
      Dtype* dout_group = o_data + (b * oc + g * m) * channel_size_out;
Y
Yan Chunwei 已提交
484 485 486 487
      const int8_t* din_group = static_cast<const int8_t*>(i_data) +
                                (b * ic + g * chin_per_group) * channel_size_in;
      const int8_t* weights_group =
          static_cast<const int8_t*>(weights) + g * weights_size_per_group;
488
      const float* bias_group = bias + g * m;
Y
Yan Chunwei 已提交
489 490 491
      int8_t* dB = tmp_work_space;
      const float* scale_group = scale + g * m;

492 493 494 495 496 497 498
      im2col(din_group,
             chin_per_group,
             ih,
             win,
             kernel_h,
             kernel_w,
             pad_h,
H
HappyAngel 已提交
499
             paddings[1],
500
             pad_w,
H
HappyAngel 已提交
501
             paddings[3],
502 503 504 505 506
             stride_h,
             stride_w,
             dila_h,
             dila_w,
             dB);
Y
Yan Chunwei 已提交
507
      if (n == 1) {
508 509 510 511 512 513 514 515 516 517 518
        gemv_int8(weights_group,
                  dB,
                  dout_group,
                  false,
                  m,
                  k,
                  scale_group,
                  flag_bias,
                  bias_group,
                  flag_relu,
                  ctx);
Y
Yan Chunwei 已提交
519
      } else {
520 521 522 523 524 525 526 527 528 529 530 531
        gemm_prepack_int8(weights_group,
                          dB,
                          bias_group,
                          dout_group,
                          m,
                          n,
                          k,
                          flag_bias,
                          flag_relu,
                          false,
                          scale_group,
                          ctx);
Y
Yan Chunwei 已提交
532 533 534 535 536
      }
    }
  }
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
template void conv_im2col_gemm_int8<int8_t>(const int8_t* i_data,
                                            int8_t* o_data,
                                            int num,
                                            int oc,
                                            int oh,
                                            int ow,
                                            int ic,
                                            int ih,
                                            int win,
                                            const int8_t* weights,
                                            const float* bias,
                                            const operators::ConvParam& param,
                                            ARMContext* ctx,
                                            const float* scale);

template void conv_im2col_gemm_int8<float>(const int8_t* i_data,
                                           float* o_data,
                                           int num,
                                           int oc,
                                           int oh,
                                           int ow,
                                           int ic,
                                           int ih,
                                           int win,
                                           const int8_t* weights,
                                           const float* bias,
                                           const operators::ConvParam& param,
                                           ARMContext* ctx,
                                           const float* scale);

void conv_depthwise_3x3_fp32(const void* din,
                             void* dout,
                             int num,
                             int ch_out,
                             int h_out,
                             int w_out,
                             int ch_in,
                             int h_in,
                             int w_in,
                             const void* weights,
                             const float* bias,
                             const operators::ConvParam& param,
                             ARMContext* ctx,
                             const float* scale) {
H
HappyAngel 已提交
581
  auto paddings = *param.paddings;
582
  auto act_param = param.activation_param;
H
HappyAngel 已提交
583 584
  const int pad_h = paddings[0];
  const int pad_w = paddings[2];
Y
Yan Chunwei 已提交
585
  int stride = param.strides[1];
H
HappyAngel 已提交
586 587 588
  int pad = pad_w;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
H
HappyAngel 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  bool pads_equal =
      ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3]));
  if (stride == 1) {
    if (pads_equal && (pad_h == pad_w) && (pad < 2)) {  // support pad = [0, 1]
      conv_depthwise_3x3s1_fp32(reinterpret_cast<const float*>(din),
                                reinterpret_cast<float*>(dout),
                                num,
                                ch_out,
                                h_out,
                                w_out,
                                ch_in,
                                h_in,
                                w_in,
                                reinterpret_cast<const float*>(weights),
                                bias,
                                pad,
                                flag_bias,
                                flag_relu,
607
                                act_param,
H
HappyAngel 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621
                                ctx);
    } else {
      conv_3x3s1_depthwise_fp32(reinterpret_cast<const float*>(din),
                                reinterpret_cast<float*>(dout),
                                num,
                                ch_out,
                                h_out,
                                w_out,
                                ch_in,
                                h_in,
                                w_in,
                                reinterpret_cast<const float*>(weights),
                                bias,
                                param,
622
                                act_param,
H
HappyAngel 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
                                ctx);
    }

  } else if (stride == 2) {
    if (pad_h == pad_w && (pad < 2)) {  // support pad = [0, 1]
      conv_depthwise_3x3s2_fp32(reinterpret_cast<const float*>(din),
                                reinterpret_cast<float*>(dout),
                                num,
                                ch_out,
                                h_out,
                                w_out,
                                ch_in,
                                h_in,
                                w_in,
                                reinterpret_cast<const float*>(weights),
                                bias,
                                pad,
                                flag_bias,
                                flag_relu,
                                ctx);
    } else {
      conv_3x3s2_depthwise_fp32(reinterpret_cast<const float*>(din),
                                reinterpret_cast<float*>(dout),
                                num,
                                ch_out,
                                h_out,
                                w_out,
                                ch_in,
                                h_in,
                                w_in,
                                reinterpret_cast<const float*>(weights),
                                bias,
                                param,
                                ctx);
    }
Y
Yan Chunwei 已提交
658
  } else {
H
HappyAngel 已提交
659
    LOG(FATAL) << "fp32 depthwise conv3x3 stride: " << stride << " unsupported";
Y
Yan Chunwei 已提交
660 661 662
  }
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676
void conv_depthwise_5x5_fp32(const void* din,
                             void* dout,
                             int num,
                             int ch_out,
                             int h_out,
                             int w_out,
                             int ch_in,
                             int h_in,
                             int w_in,
                             const void* weights,
                             const float* bias,
                             const operators::ConvParam& param,
                             ARMContext* ctx,
                             const float* scale) {
H
HappyAngel 已提交
677 678
  auto paddings = *param.paddings;
  int pad = paddings[0];
Y
Yan Chunwei 已提交
679 680 681
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
682
  ctx->ExtendWorkspace((w_in + w_out) * sizeof(float));
Y
Yan Chunwei 已提交
683
  if (pad == 2 && stride == 2) {
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    conv_depthwise_5x5s2_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              pad,
                              flag_bias,
                              flag_relu,
                              ctx);
Y
Yan Chunwei 已提交
699
  } else if (stride == 1) {
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    conv_depthwise_5x5s1_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              pad,
                              flag_bias,
                              flag_relu,
                              ctx);
Y
Yan Chunwei 已提交
715 716 717 718 719
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv";
  }
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733
void conv_depthwise_3x3_int8_fp32(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
H
HappyAngel 已提交
734 735 736
  auto paddings = *param.paddings;
  int pad_h = paddings[0];
  int pad_w = paddings[2];
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_3x3s1_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else if (stride == 2) {
    conv_depthwise_3x3s2_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 3x3 dw conv int8";
  }
}

void conv_depthwise_3x3_int8_int8(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
H
HappyAngel 已提交
793 794 795
  auto paddings = *param.paddings;
  int pad_h = paddings[0];
  int pad_w = paddings[2];
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_3x3s1_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else if (stride == 2) {
    conv_depthwise_3x3s2_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 3x3 dw conv int8";
  }
}

Y
yiicy 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851
void conv_depthwise_5x5_int8_fp32(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
H
HappyAngel 已提交
852 853 854
  auto paddings = *param.paddings;
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
yiicy 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_5x5s1_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv int8";
  }
}

void conv_depthwise_5x5_int8_int8(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
H
HappyAngel 已提交
894 895 896
  auto paddings = *param.paddings;
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
yiicy 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_5x5s1_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv int8";
  }
}

Y
Yan Chunwei 已提交
922 923 924 925
}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle