test_pool_op.cpp 8.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Z
ZhenWang 已提交
15
#include <iostream>
W
wangliu 已提交
16
#include "../test_include.h"
H
hjchen2 已提交
17
#include "operators/math/pooling.h"
W
wangliu 已提交
18
#include "operators/pool_op.h"
19

Z
ZhenWang 已提交
20
namespace paddle_mobile {
H
hjchen2 已提交
21 22 23

namespace math = operators::math;

H
hjchen2 已提交
24
template <int PoolType, int Kernel, int Pad, int Stride>
Z
ZhenWang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
int TestPoolOp(int in_channels, int in_height, int in_width) {
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  std::string pooling_type = (PoolType == 0 ? "max" : "avg");

  int batch_size = 1;
  int input_c = in_channels;
  int input_h = in_height;
  int input_w = in_width;

  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});
47

Z
ZhenWang 已提交
48 49
  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
H
hjchen2 已提交
50 51 52 53 54
  SetupTensor<float>(input, input_shape, -127, 127);

  //  for (int i = 0; i < input->numel(); ++i) {
  //    DLOG << "input[" << i << "] = " << input->data<float>()[i];
  //  }
55

Z
ZhenWang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["pooling_type"].SetString(pooling_type);
  attrs["ksize"].Set<vector<int>>(std::vector<int>({kernel_h, kernel_w}));
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["ceil_mode"].Set<bool>(false);
  attrs["global_pooling"].Set<bool>(false);

  auto *op = new operators::PoolOp<CPU, float>("pool2d", inputs, outputs, attrs,
                                               scope);
  op->InferShape();
  op->Init();
  op->Run();

H
hjchen2 已提交
71
  auto output = output_var->template Get<framework::LoDTensor>();
Z
ZhenWang 已提交
72
  framework::Tensor output_cmp;
H
hjchen2 已提交
73
  output_cmp.mutable_data<float>(output->dims());
H
hjchen2 已提交
74 75 76 77 78

  if (pooling_type == "avg") {
    math::Pooling<Avg>()(*input, std::vector<int>{kernel_h, kernel_w},
                         std::vector<int>{stride_h, stride_w},
                         std::vector<int>{pad_h, pad_w}, &output_cmp);
Z
ZhenWang 已提交
79
  } else {
H
hjchen2 已提交
80 81 82
    math::Pooling<Max>()(*input, std::vector<int>{kernel_h, kernel_w},
                         std::vector<int>{stride_h, stride_w},
                         std::vector<int>{pad_h, pad_w}, &output_cmp);
Z
ZhenWang 已提交
83 84 85
  }

  // compare results
H
hjchen2 已提交
86 87
  const float *output_data = output->data<float>();
  float *output_cmp_data = output_cmp.data<float>();
Z
ZhenWang 已提交
88
  for (int i = 0; i < output->numel(); ++i) {
H
hjchen2 已提交
89 90 91 92 93 94 95 96 97 98
    float gap = output_data[i] - output_cmp_data[i];
    //    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
    //                          "output[%d] = %d, output_cmp[%d] = %d", i,
    //                          output_data[i], i, output_cmp_data[i]);
    if (gap > 1e-5 && std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
      LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
                     << ", output_cmp_data[" << i
                     << "] = " << output_cmp_data[i];
      exit(1);
    }
99
  }
Z
ZhenWang 已提交
100
  delete op;
101
  return 0;
102
}
Z
ZhenWang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}  // namespace paddle_mobile

int main(int argc, char *argv[]) {
  if (argc < 4) {
    LOG(paddle_mobile::kLOG_INFO)
        << "Usage:\n"
        << "  ./test-pool-op in_channels in_height in_width \n"
        << "  params:\n"
        << "   -in_channels: int, input image's channels\n"
        << "   -in_height: int, input image's height\n"
        << "   -in_width: int, input image's width\n";
    return 1;
  }
  int in_channels = atoi(argv[1]);
  int in_height = atoi(argv[2]);
  int in_width = atoi(argv[3]);
H
hjchen2 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=0, stride=1";
  paddle_mobile::TestPoolOp<0, 3, 0, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=1, stride=1";
  paddle_mobile::TestPoolOp<0, 3, 1, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=2, stride=1";
  paddle_mobile::TestPoolOp<0, 3, 2, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=5, stride=1";
  paddle_mobile::TestPoolOp<0, 3, 5, 1>(in_channels, in_height, in_width);

  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=0, stride=1";
  paddle_mobile::TestPoolOp<1, 3, 0, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=1, stride=1";
  paddle_mobile::TestPoolOp<1, 3, 1, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=2, stride=1";
  paddle_mobile::TestPoolOp<1, 3, 2, 1>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=5, stride=1";
  paddle_mobile::TestPoolOp<1, 3, 5, 1>(in_channels, in_height, in_width);

  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=0, stride=2";
  paddle_mobile::TestPoolOp<0, 3, 0, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=1, stride=2";
  paddle_mobile::TestPoolOp<0, 3, 1, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=2, stride=2";
  paddle_mobile::TestPoolOp<0, 3, 2, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=max, kernel=3, pad=5, stride=2";
  paddle_mobile::TestPoolOp<0, 3, 5, 2>(in_channels, in_height, in_width);

  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=0, stride=2";
  paddle_mobile::TestPoolOp<1, 3, 0, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=1, stride=2";
  paddle_mobile::TestPoolOp<1, 3, 1, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=2, stride=2";
  paddle_mobile::TestPoolOp<1, 3, 2, 2>(in_channels, in_height, in_width);
  LOG(paddle_mobile::kLOG_INFO)
      << "float, pooling_type=avg, kernel=3, pad=5, stride=2";
  paddle_mobile::TestPoolOp<1, 3, 5, 2>(in_channels, in_height, in_width);

  //  // kernel = 5, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 1>(in_channels, in_height,
  //                                                  in_width);
  //  // kernel = 5, pad = 0, stride = 2
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=5, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 5, 0, 2>(in_channels, in_height,
  //                                                  in_width);
  //  // kernel = 7, pad = 0, stride = 1
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=1";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 1>(in_channels, in_height,
  //                                                  in_width);
  //  // kernel = 7, pad = 0, stride = 4
  //  LOG(paddle_mobile::kLOG_INFO)
  //      << "float, ceil_mode=false, pooling_type=avg, kernel=7, pad=0,
  //      stride=4";
  //  paddle_mobile::TestPoolOp<float, 0, 1, 7, 0, 4>(in_channels, in_height,
  //                                                  in_width);
Z
ZhenWang 已提交
195
}