run.py 22.6 KB
Newer Older
Y
Yanzhan Yang 已提交
1
# -*- coding: utf-8 -*
Y
Yanzhan Yang 已提交
2 3 4 5 6 7 8 9 10 11 12
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid

model_path = "model"
checked_model_path = "checked_model"
feed_path = "feeds"
output_path = "outputs"
13
diff_threshold = 0.1
Y
Yanzhan Yang 已提交
14 15
is_lod = False
mobile_model_path = ""
Y
Yanzhan Yang 已提交
16
fast_check = False
17 18 19
is_sample_step = False
sample_step = 1
sample_num = 20
Z
zp7 已提交
20 21
need_encrypt = False
checked_encrypt_model_path = "checked_encrypt_model"
22 23 24
output_var_filter = []
output_key_filter = {}
check_shape = False
25 26
architecture = "arm-v7a"
# architecture = "arm-v8a"
Y
Yanzhan Yang 已提交
27 28

np.set_printoptions(linewidth=150)
Y
Yanzhan Yang 已提交
29 30 31 32 33 34 35

mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
    mobile_src_root = mobile_src_root[:-1]

dot = "•"
Y
Yanzhan Yang 已提交
36 37 38 39
black = lambda x: "\033[30m" + str(x) + "\033[0m"
red = lambda x: "\033[31m" + str(x) + "\033[0m"
green = lambda x: "\033[32m" + str(x) + "\033[0m"
yellow = lambda x: "\033[33m" + str(x) + "\033[0m"
Y
Yanzhan Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
reset = lambda x: "\033[0m" + str(x)

def pp_tab(x, level=0):
    header = ""
    for i in range(0, level):
        header += "\t"
    print(header + str(x))
def pp_black(x, level=0):
    pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
    pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
    pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
    pp_tab(yellow(x) + reset(""), level)

def sh(command):
    pipe = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
    sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))

pp_yellow(dot + " start inspecting fluid model")

exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())

# 加载模型
def load_model(model_path):
    prog, feeds, fetches = fluid.io.load_inference_model(dirname=model_path, executor=exe, model_filename="model", params_filename="params")
    return (prog, feeds, fetches)

prog, feeds, fetches = load_model(model_path)

# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
75
def resave_model(feed_kv):
Y
Yanzhan Yang 已提交
76 77 78 79
    if len(mobile_model_path) > 0:
        pp_green("has set mobile_model_path, stop checking model & params", 1)
        sh("cp {}/* {}".format(mobile_model_path, checked_model_path))
        return
Y
Yanzhan Yang 已提交
80 81 82 83 84
    ops = prog.current_block().ops
    vars = prog.current_block().vars
    # 强制所有var为可持久化
    p_names = []
    for name in vars:
Y
Yanzhan Yang 已提交
85
        name = str(name)
Y
Yanzhan Yang 已提交
86 87 88 89
        v = fluid.framework._get_var(name, prog)
        if not v.persistable:
            v.persistable = True
            p_names.append(name)
90
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
91 92 93
    has_found_wrong_shape = False
    # 修正每个var的形状
    for name in vars:
Y
Yanzhan Yang 已提交
94
        name = str(name)
Y
Yanzhan Yang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        v = vars[name]
        if v.persistable:
            v1 = fluid.global_scope().find_var(name)
            try:
                t1 = v1.get_tensor()
                shape = t1.shape()
            except:
                continue
            if v.desc.shape() != shape:
                has_found_wrong_shape = True
            v.desc.set_shape(shape)
    # 恢复var的可持久化属性
    for name in p_names:
        v = fluid.framework._get_var(name, prog)
        v.persistable = False
    fluid.io.save_inference_model(dirname=checked_model_path, feeded_var_names=feeds, target_vars=fetches, executor=exe, main_program=prog, model_filename="model", params_filename="params")
    if has_found_wrong_shape:
        pp_red("has found wrong shape", 1)
    else:
        pp_green("has not found wrong shape", 1)
    pp_green("new model is saved into directory 【{}】".format(checked_model_path), 1)

Z
zp7 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# 分别加密model和params,加密key使用同一个
def encrypt_model():
    if not need_encrypt:
        return
    pp_yellow(dot + dot + " encrypting model")
    if not os.path.exists(checked_encrypt_model_path):
        os.mkdir(checked_encrypt_model_path)
    res = sh("model-encrypt-tool/enc_key_gen -l 20 -c 232")
    lines = res.split("\n")

    for line in lines:
        if line.startswith("key:"):
            line = line.replace('key:','')
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/model -o "
               "checked_model/model.ml".format(line))
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/params  -o checked_model/params.ml".format(line))
            pp_green("model has been encrypted, key is : {}".format(line), 1)
            sh("mv {} {}".format(checked_model_path + "/*.ml", checked_encrypt_model_path))
            return
    pp_red("model encrypt error", 1)

Y
Yanzhan Yang 已提交
138 139 140 141
# 生成feed的key-value对
def gen_feed_kv():
    feed_kv = {}
    for feed_name in feeds:
142
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        data = np.random.random(feed_shape).astype("float32")
        feed_kv[feed_name] = data
    return feed_kv

# 保存feed的key-value对
def save_feed_kv(feed_kv):
    for feed_name in feed_kv:
        feed_data = feed_kv[feed_name]
        feed_list = feed_data.flatten().tolist()
        if not os.path.exists(feed_path):
            os.mkdir(feed_path)
        file_name = feed_name.replace("/", "_")
        out_file = open(feed_path + "/" + file_name, "w")
        for feed_item in feed_list:
            out_file.write("{}\n".format(feed_item))
        out_file.close()

last_feed_var_name = None
last_feed_file_name = None
162
last_feed_var_lod = None
Y
Yanzhan Yang 已提交
163 164
# 加载feed的key-value对
def load_feed_kv():
Y
Yanzhan Yang 已提交
165 166
    if not os.path.exists(feed_path):
        return None
Y
Yanzhan Yang 已提交
167 168
    global last_feed_var_name
    global last_feed_file_name
169
    global last_feed_var_lod
Y
Yanzhan Yang 已提交
170 171 172 173
    feed_kv = {}
    pp_yellow(dot + dot + " checking feed info")
    pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
    for feed_name in feeds:
174
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
175 176 177 178
        pp_tab("feed var name : {}; feed var shape : {}".format(feed_name, feed_shape), 1)
        file_name = feed_name.replace("/", "_")
        last_feed_var_name = feed_name
        last_feed_file_name = file_name
Y
Yanzhan Yang 已提交
179 180 181 182 183 184 185
        feed_file_path = feed_path + "/" + file_name
        if not os.path.exists(feed_file_path):
            return None
        data = np.loadtxt(feed_file_path)
        expected_len = 1
        for dim in feed_shape:
            expected_len *= dim
186
        if len(np.atleast_1d(data)) != expected_len:
Y
Yanzhan Yang 已提交
187 188
            return None
        data = data.reshape(feed_shape).astype("float32")
189 190
        
        if is_lod:
191 192 193 194
            data_shape = [1]
            for dim in feed_shape:
                data_shape.append(dim)
            data = data.reshape(data_shape).astype("float32")
195 196 197 198 199
            tensor = fluid.LoDTensor()
            seq_lens = [len(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
Y
Yanzhan Yang 已提交
200
                cur_len += l
201 202 203 204 205 206 207 208
                lod.append(cur_len)
            data = data.reshape(feed_shape)
            tensor.set(data, fluid.CPUPlace())
            tensor.set_lod([lod])
            last_feed_var_lod = lod
            feed_kv[feed_name] = tensor
        else:
            feed_kv[feed_name] = data
Y
Yanzhan Yang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    return feed_kv

# 运行模型
def run_model(feed_kv=None):
    if feed_kv is None:
        feed_kv = gen_feed_kv()
    outputs = exe.run(prog, feed=feed_kv, fetch_list=fetches, return_numpy=False)
    results = []
    for output in outputs:
        results.append(np.array(output))
    return results

# 获取变量形状
def get_var_shape(var_name):
    vars = prog.current_block().vars
    shape = vars[var_name].desc.shape()
    for i in range(len(shape)):
        dim = shape[i]
        if dim == -1:
            shape[i] = 1
    return shape

231 232 233 234 235 236
# 获取输入变量形状
def get_feed_var_shape(var_name):
    # 如果想写死输入形状,放开以下语句
    # return [1, 3, 224, 224]
    return get_var_shape(var_name)

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
persistable_cache = []
# 所有var,全部变成持久化
def force_all_vars_to_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if not persistable:
            persistable_cache.append(var_name)
            v.persistable = True

# 恢复持久化属性
def restore_all_vars_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if var_name in persistable_cache:
            v.persistable = False
    persistable_cache = []

Y
Yanzhan Yang 已提交
260 261
# 获取var的数据
def get_var_data(var_name, feed_kv=None):
262
    output = np.array(fluid.global_scope().var(var_name).get_tensor())
Y
Yanzhan Yang 已提交
263 264 265 266
    return output

output_var_cache = {}
def tensor_sample(tensor):
267 268 269 270 271
    if is_sample_step:
        step = sample_step
    else:
        step = math.floor(len(tensor) / sample_num)
    step = max(step, 1)
272
    step = int(step)
Y
Yanzhan Yang 已提交
273
    sample = []
274
    for i in range(0, len(tensor), step):
Y
Yanzhan Yang 已提交
275 276 277
        sample.append(tensor[i])
    return sample

278
op_cache = {}
Y
Yanzhan Yang 已提交
279 280
# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
281 282
    force_all_vars_to_persistable()
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
283 284 285
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    ops = prog.current_block().ops
Y
Yanzhan Yang 已提交
286 287 288
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
289
    feed_names = feeds
290 291 292
    if len(output_var_filter) > 0:
        for fetch_name in fetch_names:
            output_var_filter.append(fetch_name)
Y
Yanzhan Yang 已提交
293 294 295
    for i in range(len(ops)):
        op = ops[i]
        var_name = None
296 297 298 299
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in ["Y", "Out", "Output"]:
                var_name_index = index
Y
Yanzhan Yang 已提交
300
                break
301 302 303 304 305 306 307
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            for name in op.output_arg_names:
                var_name = name
                if "tmp" in name:
                    break
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
        if fast_check:
            if var_name not in fetch_names and var_name not in feed_names:
                continue
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
            out_file.close()
        except:
            pass
    for i in range(len(ops)):
        op = ops[i]
        if op.type not in output_key_filter:
            continue
        var_name = None
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in output_key_filter[op.type]:
                var_name_index = index
                break
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            continue
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
355 356 357 358 359 360 361 362
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
Y
Yanzhan Yang 已提交
363
        if fast_check:
Y
Yanzhan Yang 已提交
364
            if var_name not in fetch_names and var_name not in feed_names:
Y
Yanzhan Yang 已提交
365
                continue
Y
Yanzhan Yang 已提交
366 367 368 369 370 371 372
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
373 374 375 376 377 378
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
Y
Yanzhan Yang 已提交
379 380 381 382
            out_file.close()
        except:
            pass
    pp_green("all the op outputs are saved into directory 【{}】".format(output_path), 1)
383
    restore_all_vars_persistable()
Y
Yanzhan Yang 已提交
384 385 386 387 388 389 390 391 392 393

ops = prog.current_block().ops
vars = prog.current_block().vars

pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
    op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)

Y
Yanzhan Yang 已提交
394 395 396 397
def check_mobile_results(args, fuse, mem_opt):
    args = "{} {} {}".format("1" if fuse else "0", "1" if mem_opt else "0", args)
    res = sh("adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".format(mobile_exec_root, args))
    lines = res.split("\n")
Y
Yanzhan Yang 已提交
398 399
    # for line in lines:
    #     print(line)
Y
Yanzhan Yang 已提交
400 401 402 403
    for line in lines:
        if line.startswith("auto-test-debug"):
            print(line)
    pp_yellow(dot + dot + " checking paddle mobile results for {} -- {} ".format(green("【fusion】" if fuse else "【non fusion】"), green("【memory-optimization】" if mem_opt else "【non-memory-optimization】")))
Y
Yanzhan Yang 已提交
404 405 406
    mobile_var_cache = {}
    for line in lines:
        parts = line.split(" ")
Y
Yanzhan Yang 已提交
407 408 409
        if len(parts) < 2:
            continue
        if "auto-test" != parts[0]:
Y
Yanzhan Yang 已提交
410 411 412 413 414
            continue
        if parts[1] == "load-time-cost":
            pp_green("load time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "predict-time-cost":
            pp_green("predict time cost : {}".format(parts[2]), 1) 
415 416
        elif parts[1] == "preprocess-time-cost":
            pp_green("preprocess time cost : {}".format(parts[2]), 1)
Y
Yanzhan Yang 已提交
417 418 419 420 421 422 423
        elif parts[1] == "var":
            var_name = parts[2]
            values = list(map(lambda x: float(x), parts[3:]))
            mobile_var_cache[var_name] = values
    error_index = None
    error_values1 = None
    error_values2 = None
Y
Yanzhan Yang 已提交
424 425 426 427
    checked_names = []
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
428 429
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
Y
Yanzhan Yang 已提交
430 431 432 433 434 435 436 437
        if mem_opt:
            found_in_fetch = False
            for fetch in fetches:
                if op_output_var_name == fetch.name:
                    found_in_fetch = True
                    break
            if not found_in_fetch:
                continue
Y
Yanzhan Yang 已提交
438 439 440 441
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
442 443
        if op_output_var_name not in fetch_names:
            continue
Y
Yanzhan Yang 已提交
444 445
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
446 447
        shape = get_var_shape(op_output_var_name) if check_shape else []
        if len(values1) + len(shape) != len(values2):
Y
Yanzhan Yang 已提交
448
            error_index = index
449 450 451 452 453 454
        for i in range(len(shape)):
            v1 = shape[i]
            v2 = values2[i]
            if v1 != v2:
                error_index = index
                break
Y
Yanzhan Yang 已提交
455 456 457
        if error_index == None:
            for i in range(len(values1)):
                v1 = values1[i]
458
                v2 = values2[len(shape) + i]
Y
Yanzhan Yang 已提交
459
                if abs(v1 - v2) > diff_threshold:
Y
Yanzhan Yang 已提交
460 461
                    error_index = index
                    break
Y
Yanzhan Yang 已提交
462
        checked_names.append(op_output_var_name)
Y
Yanzhan Yang 已提交
463 464 465 466
        if error_index != None:
            error_values1 = values1
            error_values2 = values2
            break
Y
Yanzhan Yang 已提交
467 468 469 470 471
    if error_index == None:
        for name in fetch_names:
            if name not in checked_names:
                error_index = -1
                break
Y
Yanzhan Yang 已提交
472 473
    if error_index == None:
        pp_green("outputs are all correct", 1)
Y
Yanzhan Yang 已提交
474 475
    elif error_index == -1:
        pp_red("outputs are missing")
Y
Yanzhan Yang 已提交
476
    else:
Y
Yanzhan Yang 已提交
477 478
        error_values1 = np.array(error_values1)
        error_values2 = np.array(error_values2)
Y
Yanzhan Yang 已提交
479
        # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
480
        pp_red("outputs are incorrect", 1)
Y
Yanzhan Yang 已提交
481 482
        pp_red("fluid results are : ", 1)
        pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
Z
zp7 已提交
483
        pp_yellow("paddle mobile results are : ", 1)
Y
Yanzhan Yang 已提交
484
        pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    if not fuse and not mem_opt:
        error_index = None
        error_values1 = None
        error_values2 = None
        checked_names = []
        fetch_names = []
        for fetch in fetches:
            fetch_names.append(fetch.name)
        for index in op_cache:
            op_output_var_name, op = op_cache[index]
            if mem_opt:
                found_in_fetch = False
                for fetch in fetches:
                    if op_output_var_name == fetch.name:
                        found_in_fetch = True
                        break
                if not found_in_fetch:
                    continue
            if not op_output_var_name in output_var_cache:
                continue
            if not op_output_var_name in mobile_var_cache:
                continue
            if fuse or mem_opt:
                if op_output_var_name not in fetch_names:
                    continue
            values1 = output_var_cache[op_output_var_name]
            values2 = mobile_var_cache[op_output_var_name]
            shape = get_var_shape(op_output_var_name) if check_shape else []
            if len(values1) + len(shape) != len(values2):
                error_index = index
            for i in range(len(shape)):
                v1 = shape[i]
                v2 = values2[i]
                if v1 != v2:
                    error_index = index
                    break
            if error_index == None:
                for i in range(len(values1)):
                    v1 = values1[i]
                    v2 = values2[len(shape) + i]
                    if abs(v1 - v2) > diff_threshold:
                        error_index = index
                        break
            checked_names.append(op_output_var_name)
            if error_index != None:
                error_values1 = values1
                error_values2 = values2
                break
        if error_index == None:
            for name in fetch_names:
                if name not in checked_names:
                    error_index = -1
                    break
        if error_index == None:
            pp_green("outputs are all correct", 1)
        elif error_index == -1:
            pp_red("outputs are missing")
        else:
            error_values1 = np.array(error_values1)
            error_values2 = np.array(error_values2)
            # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
            pp_red("corresponding fluid op is {}th op, op's type is {}, wrong var name is {}".format(
                error_index,op_cache[error_index][1].type,op_output_var_name), 1)
            pp_red("fluid results are : ", 1)
            pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
            pp_yellow("paddle mobile results are : ", 1)
            pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
Y
Yanzhan Yang 已提交
552 553 554 555 556 557
    # print(output_var_cache)
    # print(mobile_var_cache)

def main():
    # 加载kv
    feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
558 559 560 561
    if feed_kv == None:
        feed_kv = gen_feed_kv()
        save_feed_kv(feed_kv)
        feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
562 563 564 565 566 567
    # 预测
    pp_yellow(dot + dot + " checking inference")
    outputs = run_model(feed_kv=feed_kv)
    pp_tab("fluid output : {}".format(outputs), 1)
    # 重新保存模型
    pp_yellow(dot + dot + " checking model correctness")
568
    resave_model(feed_kv=feed_kv)
Z
zp7 已提交
569 570
    # 输出加密模型
    encrypt_model()
Y
Yanzhan Yang 已提交
571 572 573
    # 输出所有中间结果
    pp_yellow(dot + dot + " checking output result of every op")
    save_all_op_output(feed_kv=feed_kv)
574 575 576 577 578
    pp_yellow(dot + dot + " checking fetch info")
    for fetch in fetches:
        fetch_name = fetch.name
        fetch_shape = get_var_shape(fetch_name)
        pp_tab("fetch var name : {}; fetch var shape : {}".format(fetch_name, fetch_shape), 1)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    # 输出所有op、var信息
    info_file = open("info.txt", "w")
    for i in range(len(ops)):
        op = ops[i]
        info_file.write("{}th op: type - {}\n".format(i, op.type))
        info_file.write("inputs:\n")
        for var_name in op.input_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
        info_file.write("outputs:\n")
        for var_name in op.output_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
    info_file.close()
Y
Yanzhan Yang 已提交
601 602 603 604 605 606 607
    # 开始检查mobile的正确性
    print("")
    print("==================================================")
    print("")
    pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
    push(checked_model_path)
    push(feed_path + "/" + last_feed_file_name, "input.txt")
608 609
    push(mobile_src_root + "/build/release/{}/build/libpaddle-mobile.so".format(architecture))
    push(mobile_src_root + "/build/release/{}/build/cl_kernel".format(architecture))
Y
Yanzhan Yang 已提交
610
    push(mobile_src_root + "/test/build/test-net")
611
    last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
Y
Yanzhan Yang 已提交
612 613 614
    args = str(len(last_feed_var_shape))
    for dim in last_feed_var_shape:
        args += " " + str(dim)
615 616 617 618 619 620 621
    if is_lod:
        args += " 1"
        args += " " + str(len(last_feed_var_lod))
        for dim in last_feed_var_lod:
            args += " " + str(dim)
    else:
        args += " 0"
Y
Yanzhan Yang 已提交
622
    args += " " + str(len(output_var_cache))
623 624 625 626 627
    args += " " + str(1 if is_sample_step else 0)
    if is_sample_step:
        args += " " + str(sample_step)
    else:
        args += " " + str(sample_num)
Y
Yanzhan Yang 已提交
628 629
    for var_name in output_var_cache.keys():
        args += " " + var_name
630
    args += " " + str(1 if check_shape else 0)
Y
Yanzhan Yang 已提交
631 632 633
    if not fast_check:
        check_mobile_results(args, False, False)
        check_mobile_results(args, False, True)
Y
Yanzhan Yang 已提交
634 635
    check_mobile_results(args, True, False)
    check_mobile_results(args, True, True)
Y
Yanzhan Yang 已提交
636 637 638

if __name__ == "__main__":
    main()