paddle_mobile_wrap.cpp 10.8 KB
Newer Older
Y
Yanzhan Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile_wrap.h"

#include "io/api_paddle_mobile.h"
#include "io/paddle_mobile.h"

namespace paddle_mobile {
namespace wrap {

#ifndef PADDLE_MOBILE_FPGA

// ddim class
int DDim::size() { return dims.size(); }

int64_t &DDim::operator[](int idx) {
  if (0 <= idx && idx < dims.size()) {
    return dims[idx];
  }
  int64_t non_exist = 0;
  return non_exist;
}

int64_t DDim::operator[](int idx) const {
  if (0 <= idx && idx < dims.size()) {
    return dims[idx];
  }
  return 0;
}

DDim make_ddim(const std::vector<int64_t> &dims) {
  DDim ddim;
  for (auto dim : dims) {
    ddim.dims.push_back(dim);
  }
  return ddim;
}

// tensor class
52

Y
Yanzhan Yang 已提交
53 54 55 56 57
Tensor::Tensor(float *data, DDim ddim) {
  this->data_ = data;
  this->ddim_ = ddim;
}

58
float *Tensor::data() const { return this->data_; }
Y
Yanzhan Yang 已提交
59 60 61 62

DDim Tensor::dims() const { return this->ddim_; }

// net class
63 64 65 66 67 68 69 70

void Net::SetThreadNum(int threads) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      engine->SetThreadNum(threads);
    }
Y
Yanzhan Yang 已提交
71 72 73
  }
}

74
void Net::SetCLPath(std::string path) {
75
#ifdef PADDLE_MOBILE_CL
76 77 78 79
  if (this->device_ == kGPU_CL) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    engine->SetCLPath(path);
Y
Yanzhan Yang 已提交
80
  }
81
#endif
82 83 84 85 86 87 88 89 90 91 92 93 94 95
}

bool Net::Load(const std::string &dirname, const bool optimize,
               const bool quantification, const int batch_size,
               const bool lod_mode) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status =
          engine->Load(dirname, optimize, quantification, batch_size, lod_mode);
      return status == paddle_mobile::PMSuccess;
    }
  } else if (this->device_ == kGPU_CL) {
96
#ifdef PADDLE_MOBILE_CL
97 98 99 100 101 102 103
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status =
          engine->Load(dirname, optimize, quantification, batch_size, lod_mode);
      return status == paddle_mobile::PMSuccess;
    }
104 105 106
#else
    return false;
#endif
Y
Yanzhan Yang 已提交
107
  }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  return false;
}

bool Net::Load(const std::string &model_path, const std::string &para_path,
               const bool optimize, const bool quantification,
               const int batch_size, const bool lod_mode) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status =
          engine->Load(model_path, para_path, optimize, quantification,
                       batch_size, lod_mode);
      return status == paddle_mobile::PMSuccess;
    }
  } else if (this->device_ == kGPU_CL) {
124
#ifdef PADDLE_MOBILE_CL
125 126 127 128 129 130 131 132
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status =
          engine->Load(model_path, para_path, optimize, quantification,
                       batch_size, lod_mode);
      return status == paddle_mobile::PMSuccess;
    }
133 134 135
#else
    return false;
#endif
Y
Yanzhan Yang 已提交
136 137 138 139
  }
  return false;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
bool Net::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf,
                             size_t combined_params_len,
                             uint8_t *combined_params_buf, bool optimize,
                             bool quantification, int batch_size,
                             bool lod_mode) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      bool status = engine->LoadCombinedMemory(
          model_len, model_buf, combined_params_len, combined_params_buf,
          optimize, quantification, batch_size, lod_mode);
      return status;
    }
  } else if (this->device_ == kGPU_CL) {
155
#ifdef PADDLE_MOBILE_CL
156 157 158 159 160 161 162 163
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      bool status = engine->LoadCombinedMemory(
          model_len, model_buf, combined_params_len, combined_params_buf,
          optimize, quantification, batch_size, lod_mode);
      return status;
    }
164 165 166
#else
    return false;
#endif
Y
Yanzhan Yang 已提交
167
  }
168
  return false;
Y
Yanzhan Yang 已提交
169 170
}

171 172 173 174 175 176 177 178 179 180
std::vector<float> Net::Predict(const std::vector<float> &input,
                                const std::vector<int64_t> &dims) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      auto result = engine->Predict(input, dims);
      return result;
    }
  } else if (this->device_ == kGPU_CL) {
181
#ifdef PADDLE_MOBILE_CL
182 183 184 185 186 187
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      auto result = engine->Predict(input, dims);
      return result;
    }
188 189 190
#else
    return std::vector<float>();
#endif
Y
Yanzhan Yang 已提交
191 192 193 194
  }
  return std::vector<float>();
}

195 196 197 198 199 200 201 202 203
bool Net::Predict() {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status = engine->Predict();
      return status == paddle_mobile::PMSuccess;
    }
  } else if (this->device_ == kGPU_CL) {
204
#ifdef PADDLE_MOBILE_CL
205 206 207 208 209 210
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      paddle_mobile::PMStatus status = engine->Predict();
      return status == paddle_mobile::PMSuccess;
    }
211 212 213
#else
    return false;
#endif
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }
  return false;
}

bool Net::Predict(const Tensor &input) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      auto input_data = input.data();
      auto input_dims = input.dims();
      std::vector<int64_t> input_dims_as_vector = input_dims.dims;
      paddle_mobile::framework::Tensor input_inner(
          input_data,
          paddle_mobile::framework::make_ddim(input_dims_as_vector));
      paddle_mobile::PMStatus status = engine->Predict(input_inner);
      return status == paddle_mobile::PMSuccess;
    }
  } else if (this->device_ == kGPU_CL) {
233
#ifdef PADDLE_MOBILE_CL
234 235 236 237 238 239 240 241 242 243 244 245
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      auto input_data = input.data();
      auto input_dims = input.dims();
      std::vector<int64_t> input_dims_as_vector = input_dims.dims;
      paddle_mobile::framework::Tensor input_inner(
          input_data,
          paddle_mobile::framework::make_ddim(input_dims_as_vector));
      paddle_mobile::PMStatus status = engine->Predict(input_inner);
      return status == paddle_mobile::PMSuccess;
    }
246 247 248
#else
    return false;
#endif
Y
Yanzhan Yang 已提交
249
  }
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  return false;
}

void Net::Feed(const std::string &var_name, const Tensor &input) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      auto input_data = input.data();
      auto input_dims = input.dims();
      std::vector<int64_t> input_dims_as_vector = input_dims.dims;
      paddle_mobile::framework::Tensor input_inner(
          input_data,
          paddle_mobile::framework::make_ddim(input_dims_as_vector));
      engine->Feed(var_name, input_inner);
    }
  } else if (this->device_ == kGPU_CL) {
267
#ifdef PADDLE_MOBILE_CL
268 269 270 271 272 273 274 275 276 277 278
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      auto input_data = input.data();
      auto input_dims = input.dims();
      std::vector<int64_t> input_dims_as_vector = input_dims.dims;
      paddle_mobile::framework::Tensor input_inner(
          input_data,
          paddle_mobile::framework::make_ddim(input_dims_as_vector));
      engine->Feed(var_name, input_inner);
    }
279 280 281
#else
    return;
#endif
Y
Yanzhan Yang 已提交
282 283 284
  }
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
std::shared_ptr<Tensor> Net::Fetch(const std::string &var_name) {
  if (this->device_ == kCPU) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    if (engine != nullptr) {
      auto output_inner = engine->Fetch(var_name);
      auto ddim_inner = output_inner->dims();
      std::vector<int64_t> ddim_as_vector;
      for (int i = 0; i < ddim_inner.size(); i++) {
        ddim_as_vector.push_back(ddim_inner[i]);
      }
      auto ddim = make_ddim(ddim_as_vector);
      auto output_data = output_inner->data<float>();
      std::shared_ptr<Tensor> ptr(new Tensor(output_data, ddim));
      return ptr;
    }
  } else if (this->device_ == kGPU_CL) {
302
#ifdef PADDLE_MOBILE_CL
303 304 305 306 307 308 309 310 311 312 313 314 315 316
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
    if (engine != nullptr) {
      auto output_inner = engine->Fetch(var_name);
      auto ddim_inner = output_inner->dims();
      std::vector<int64_t> ddim_as_vector;
      for (int i = 0; i < ddim_inner.size(); i++) {
        ddim_as_vector.push_back(ddim_inner[i]);
      }
      auto ddim = make_ddim(ddim_as_vector);
      auto output_data = output_inner->data<float>();
      std::shared_ptr<Tensor> ptr(new Tensor(output_data, ddim));
      return ptr;
    }
317 318 319
#else
    return nullptr;
#endif
Y
Yanzhan Yang 已提交
320 321 322 323
  }
  return nullptr;
}

324
Net::Net(DeviceTypeEnum device) {
Y
Yanzhan Yang 已提交
325 326
  if (this->engine_ == nullptr) {
    PaddleMobileConfigInternal config;
327 328 329 330 331
    this->device_ = device;
    if (this->device_ == kCPU) {
      this->engine_ =
          new paddle_mobile::PaddleMobile<paddle_mobile::CPU>(config);
    } else if (this->device_ == kGPU_CL) {
332
#ifdef PADDLE_MOBILE_CL
333 334
      this->engine_ =
          new paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL>(config);
335
#endif
336
    }
Y
Yanzhan Yang 已提交
337 338 339
  }
}

340
Net::~Net() {
Y
Yanzhan Yang 已提交
341
  if (this->engine_ != nullptr) {
342 343 344 345 346 347
    if (this->device_ == kCPU) {
      auto engine =
          (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
      delete engine;
      this->engine_ = nullptr;
    } else if (this->device_ == kGPU_CL) {
348
#ifdef PADDLE_MOBILE_CL
349 350 351 352
      auto engine =
          (paddle_mobile::PaddleMobile<paddle_mobile::GPU_CL> *)this->engine_;
      delete engine;
      this->engine_ = nullptr;
353
#endif
354
    }
Y
Yanzhan Yang 已提交
355 356 357 358 359 360 361
  }
}

#endif

}  // namespace wrap
}  // namespace paddle_mobile