paddle_mobile_wrap.cpp 6.6 KB
Newer Older
Y
Yanzhan Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile_wrap.h"

#include "io/api_paddle_mobile.h"
#include "io/paddle_mobile.h"

namespace paddle_mobile {
namespace wrap {

#ifndef PADDLE_MOBILE_FPGA

// ddim class
int DDim::size() { return dims.size(); }

int64_t &DDim::operator[](int idx) {
  if (0 <= idx && idx < dims.size()) {
    return dims[idx];
  }
  int64_t non_exist = 0;
  return non_exist;
}

int64_t DDim::operator[](int idx) const {
  if (0 <= idx && idx < dims.size()) {
    return dims[idx];
  }
  return 0;
}

DDim make_ddim(const std::vector<int64_t> &dims) {
  DDim ddim;
  for (auto dim : dims) {
    ddim.dims.push_back(dim);
  }
  return ddim;
}

// tensor class
Tensor::Tensor(float *data, DDim ddim) {
  this->data_ = data;
  this->ddim_ = ddim;
}

template <typename T>
float *Tensor::data() const {
  return this->data_;
}

DDim Tensor::dims() const { return this->ddim_; }

// net class
template <typename Device>
void Net<Device>::SetThreadNum(int threads) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    engine->SetThreadNum(threads);
  }
}

template <typename Device>
PMStatus Net<Device>::Load(const std::string &dirname, const bool optimize,
                           const bool quantification, const int batch_size,
                           const bool lod_mode) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    paddle_mobile::PMStatus status =
        engine->Load(dirname, false, false, 1, true);
    return status == paddle_mobile::PMSuccess ? PMSuccess : PMUnKownError;
  }
  return PMUnKownError;
}

template <typename Device>
PMStatus Net<Device>::Load(const std::string &model_path,
                           const std::string &para_path, const bool optimize,
                           const bool quantification, const int batch_size,
                           const bool lod_mode) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    paddle_mobile::PMStatus status =
        engine->Load(model_path, para_path, false, false, 1, true);
    return status == paddle_mobile::PMSuccess ? PMSuccess : PMUnKownError;
  }
  return PMUnKownError;
}

template <typename Device>
bool Net<Device>::LoadCombinedMemory(size_t model_len, const uint8_t *model_buf,
                                     size_t combined_params_len,
                                     uint8_t *combined_params_buf,
                                     bool optimize, bool quantification,
                                     int batch_size, bool lod_mode) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    bool status =
        engine->LoadCombinedMemory(model_len, model_buf, combined_params_len,
                                   combined_params_buf, false, false, 1, true);
    return status;
  }
  return false;
}

template <typename Device>
PMStatus Net<Device>::Predict(const Tensor &input) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    auto input_data = input.data<float>();
    auto input_dims = input.dims();
    std::vector<int64_t> input_dims_as_vector = input_dims.dims;
    paddle_mobile::framework::Tensor input_inner(
        input_data, paddle_mobile::framework::make_ddim(input_dims_as_vector));
    paddle_mobile::PMStatus status = engine->Predict(input_inner);
    return status == paddle_mobile::PMSuccess ? PMSuccess : PMUnKownError;
  }
  return PMUnKownError;
}

template <typename Device>
std::vector<float> Net<Device>::Predict(const std::vector<float> &input,
                                        const std::vector<int64_t> &dims) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    auto result = engine->Predict(input, dims);
    return result;
  }
  return std::vector<float>();
}

template <typename Device>
PMStatus Net<Device>::Predict() {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    paddle_mobile::PMStatus status = engine->Predict();
    return status == paddle_mobile::PMSuccess ? PMSuccess : PMUnKownError;
  }
  return PMUnKownError;
}

template <typename Device>
void Net<Device>::Feed(const std::string &var_name, const Tensor &input) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    auto input_data = input.data<float>();
    auto input_dims = input.dims();
    std::vector<int64_t> input_dims_as_vector = input_dims.dims;
    paddle_mobile::framework::Tensor input_inner(
        input_data, paddle_mobile::framework::make_ddim(input_dims_as_vector));
    engine->Feed(var_name, input_inner);
  }
}

template <typename Device>
std::shared_ptr<Tensor> Net<Device>::Fetch(const std::string &var_name) {
  auto engine =
      (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
  if (engine != nullptr) {
    auto output_inner = engine->Fetch(var_name);
    auto ddim_inner = output_inner->dims();
    std::vector<int64_t> ddim_as_vector;
    for (int i = 0; i < ddim_inner.size(); i++) {
      ddim_as_vector.push_back(ddim_inner[i]);
    }
    auto ddim = make_ddim(ddim_as_vector);
    auto output_data = output_inner->data<float>();
    std::shared_ptr<Tensor> ptr(new Tensor(output_data, ddim));
    return ptr;
  }
  return nullptr;
}

template <typename Device>
Net<Device>::Net() {
  if (this->engine_ == nullptr) {
    PaddleMobileConfigInternal config;
    this->engine_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU>(config);
  }
}

template <typename Device>
Net<Device>::~Net() {
  if (this->engine_ != nullptr) {
    auto engine =
        (paddle_mobile::PaddleMobile<paddle_mobile::CPU> *)this->engine_;
    delete engine;
    this->engine_ = nullptr;
  }
}

template class Net<CPU>;
template float *Tensor::data<float>() const;

#endif

}  // namespace wrap
}  // namespace paddle_mobile