/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "framework/executor.h" #include #include #include #include "common/enforce.h" #include "common/log.h" #include "framework/framework.pb-c.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program-optimize/program_optimize.h" #include "framework/program/program_desc.h" #include "framework/program/var_desc.h" #include "framework/scope.h" #include "framework/tensor.h" #include "memory/t_malloc.h" #ifdef PADDLE_MOBILE_CL #include "framework/cl/cl_image.h" #endif namespace paddle_mobile { namespace framework { #pragma mark - executor template Executor::Executor(const Program &program, paddle_mobile::PaddleMobileConfigInternal config, int batch_size, const bool use_optimize, const bool lod_mode) : program_(program), batch_size_(batch_size), use_optimize_(use_optimize), lod_mode_(lod_mode), config_(config) { DLOG << "executor in lod mode: " << lod_mode_; Variable *variable_ptr = program_.scope->Var("batch_size"); variable_ptr->SetValue(batch_size); program_desc_ = use_optimize_ ? program_.optimizeProgram : program_.originProgram; PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr, "program_desc_ should not be nullptr"); const auto &blocks = program_desc_->Blocks(); std::shared_ptr block_desc = blocks[0]; std::vector> ops = block_desc->Ops(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op_desc = ops[j]; DLOG << "create op: " << op_desc->Type(); auto op_handler = OpRegistry::CreateOp( op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(), op_desc->GetAttrMap(), program_.scope.get()); // infer shape to reshape inputs and outputs before predict, // but for lod mode, it still need to infer shape in runtime if (!lod_mode) { op_handler->InferShape(); } ops_of_block0_.push_back(op_handler); } if (program_.combined) { InitCombineMemory(); } else { InitMemory(); } // resize feed and fetch list InitFeedFetchList(); #ifdef PADDLE_MOBILE_FPGA program_.scope->EraseVars({"feed", "fetch"}); program_.scope->print_vars(); #endif int count = 0; for (auto &op_handler : ops_of_block0_) { DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type(); op_handler->Init(); } } template void Executor::InitFeedFetchList() { std::unordered_map feed_indices, fetch_indices; for (const auto &block : program_desc_->Blocks()) { for (const auto &op_desc : block->Ops()) { if (op_desc->Type() == "feed") { std::string name = op_desc->Output("Out")[0]; feed_indices[name] = op_desc->GetAttr("col").Get(); } else if (op_desc->Type() == "fetch") { std::string name = op_desc->Input("X")[0]; fetch_indices[name] = op_desc->GetAttr("col").Get(); } } } feed_indices_.swap(feed_indices); fetch_indices_.swap(fetch_indices); auto *feed_var = program_.scope->Var("feed"); auto *feed_list = feed_var->template GetMutable(); feed_list->resize(feed_indices_.size()); auto *fetch_var = program_.scope->Var("fetch"); auto *fetch_list = fetch_var->template GetMutable(); fetch_list->resize(fetch_indices_.size()); } template static void LoadMemInternal(void **data, LoDTensor *tensor, bool quant_uint8 = false) { char **data_buf = reinterpret_cast(data); int64_t size = tensor->numel(); T *tensor_data = tensor->mutable_data(); if (quant_uint8) { // should be moved into operator init function float min_value; float max_value; memory::Copy(&min_value, *data_buf, sizeof(float)); memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float)); *data_buf += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; const uint8_t *uint8_data = reinterpret_cast(*data_buf); for (int k = 0; k < size; ++k) { tensor_data[k] = uint8_data[k] * factor + min_value; } *data_buf += size * sizeof(uint8_t); } else { memory::Copy(tensor_data, *data_buf, size * sizeof(T)); *data_buf += size * sizeof(T); } } template void Executor::LoadMemory(void **data, const std::shared_ptr var_desc, LoDTensor *tensor) { char **data_buf = reinterpret_cast(data); // version uint32_t version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // lod information // uint64_t lod_level = *(reinterpret_cast(*data_buf)); uint64_t lod_level = 0; memory::Copy(&lod_level, *data_buf, sizeof(uint64_t)); *data_buf += sizeof(uint64_t); auto *lod = tensor->mutable_lod(); lod->resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint64_t); std::vector tmp_dim(size / sizeof(size_t)); memory::Copy(tmp_dim.data(), *data_buf, size); (*lod)[i] = std::move(tmp_dim); *data_buf += size; } // tensor version uint32_t tensor_version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // tensor desc size int32_t tensor_desc_size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(int32_t); // skip tensor desc *data_buf += tensor_desc_size; const TensorDesc &tensor_desc = var_desc->Tensor_desc(); tensor->Resize(make_ddim(tensor_desc.Dims())); // parse tensor from stream switch (tensor_desc.DataType()) { case VARTYPE_TYPE_FP32: LoadMemInternal(reinterpret_cast(data_buf), tensor, program_.quantification); break; case VARTYPE_TYPE_INT8: LoadMemInternal(reinterpret_cast(data_buf), tensor); break; case VARTYPE_TYPE_INT32: LoadMemInternal(reinterpret_cast(data_buf), tensor); break; default: LOG(kLOG_ERROR) << "data type is not supported"; } } template void Executor::InitMemory() { for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; auto tensor = var->template GetMutable(); LoadMemory(reinterpret_cast(&data), var_desc, tensor); delete[] origin_data; } else { DLOG << "init no persistable var: " << var_desc->Name(); varInputMemory(var_desc, var); } } } } template void Executor::InitCombineMemory() { char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { origin_data = reinterpret_cast( const_cast(program_.combined_params_buf)); } else { self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr"); char *data = origin_data; for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } DLOG << " init combine memory persistable: " << var_desc->Name(); auto tensor = var->template GetMutable(); LoadMemory(reinterpret_cast(&data), var_desc, tensor); } else { DLOG << " init combine memory no persistable: " << var_desc->Name(); varInputMemory(var_desc, var); } } } if (self_alloc) { delete[] origin_data; } LOG(kLOG_INFO) << "init combine memory finish"; } template void Executor::InitNoPersistableMemory(const Tensor &input_tensor) { for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto tensor = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } } else { if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { DDim tensor_dim = tensor->dims(); DDim new_dim = make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2], input_tensor.dims()[3]}); tensor->Resize(new_dim); tensor->template mutable_data(); } else { PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`", var_desc->Type()); } } } } std::shared_ptr output = GetOutput("fetch"); output->Resize(input_tensor.dims()); output->mutable_data(); } template bool Executor::varInputMemory( const std::shared_ptr &var_desc, Variable *var) const { #ifdef PADDLE_MOBILE_FPGA framework::LoDTensor *tensor = var->template GetMutable(); tensor->init(typeid(float)); return true; #endif auto TypeId = [](const VarType_Type &type) -> std::type_index { switch (type) { case VARTYPE_TYPE_BOOL: return typeid(bool); case VARTYPE_TYPE_FP32: return typeid(float); case VARTYPE_TYPE_INT8: return typeid(int8_t); case VARTYPE_TYPE_INT32: return typeid(int); case VARTYPE_TYPE_INT64: return typeid(int64_t); default: PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type); } }; auto type = var_desc->Type(); if (type == VARTYPE_TYPE_LOD_TENSOR) { auto data_type = var_desc->Tensor_desc().DataType(); framework::LoDTensor *tensor = var->template GetMutable(); tensor->mutable_data(TypeId(data_type)); } else if (type == VARTYPE_TYPE_STEP_SCOPES) { std::vector *step_scopes = var->template GetMutable>(); } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) { framework::LoDTensorArray *tensor_array = var->template GetMutable(); } else { PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type); } return true; } template PMStatus Executor::Predict( const std::vector> &inputs) { for (const auto &input : inputs) { SetInput(input.second, input.first); } return this->Predict(); } template PMStatus Executor::Predict( const std::vector> &inputs) { for (const auto &input : inputs) { SetInput(input.second, input.first); } return this->Predict(); } template std::vector Executor::Predict(const std::vector &input, const std::vector &dims) { PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0, "We don't know which tensor should be assign, since no " "feed op found in this model"); PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0, "We don't know which tensor should be fetch out, since " "no fetch op found in this model"); std::string input_name = feed_indices_.begin()->first; Tensor feed_tensor(input, make_ddim(dims)); SetInput(feed_tensor, input_name); std::vector output; if (this->Predict() == PMSuccess) { std::string output_name = fetch_indices_.begin()->first; const auto output_tensor = GetOutput(output_name); output.resize(output_tensor->numel()); memcpy(output.data(), output_tensor->template data(), output.size() * sizeof(T)); } return output; } template void Executor::SetInput(const Tensor &input, const std::string &var_name) { int index = 0; if (feed_indices_.find(var_name) != feed_indices_.end()) { index = feed_indices_.find(var_name)->second; } auto *feed_var = program_.scope->Var("feed"); framework::LoDTensor &target = feed_var->template GetMutable()->at(index); if (config_.load_when_predict) { if (input_dim_last_ != input.dims()) { InitNoPersistableMemory(input); input_dim_last_ = input.dims(); } } target.Resize(input.dims()); target.ShareDataWith(input); } template void Executor::SetInput(const LoDTensor &input, const std::string &var_name) { int index = 0; if (feed_indices_.find(var_name) != feed_indices_.end()) { index = feed_indices_.find(var_name)->second; } auto *feed_var = program_.scope->Var("feed"); framework::LoDTensor &target = feed_var->template GetMutable()->at(index); if (config_.load_when_predict) { if (input_dim_last_ != input.dims()) { InitNoPersistableMemory(input); input_dim_last_ = input.dims(); } } target.Resize(input.dims()); target.ShareDataWith(input); target.set_lod(input.lod()); } template std::shared_ptr Executor::GetOutput( const std::string &var_name) { int index = 0; if (fetch_indices_.find(var_name) != fetch_indices_.end()) { index = fetch_indices_.find(var_name)->second; } auto *fetch_var = program_.scope->Var("fetch"); framework::LoDTensor &target = fetch_var->template GetMutable()->at(index); return std::make_shared(target); } template PMStatus Executor::Predict() { #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops_of_block0_.size()); struct timespec ts; int op_index = 0; #endif for (auto &op_handler : ops_of_block0_) { #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif if (lod_mode_) { op_handler->InferShape(); } op_handler->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; ++op_index; #endif } #ifdef PADDLE_MOBILE_PROFILE std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; if (ops_of_block0_[i]->Type() == "conv2d" || ops_of_block0_[i]->Type() == "depthwise_conv2d") { auto inputs = ops_of_block0_[i]->Inputs(); auto *filter = GetVarValue("Filter", inputs, *(program_.scope)); int kernel_size = filter->dims()[2]; _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] += timeCost; } else { _tp[ops_of_block0_[i]->Type()] += timeCost; } } printf("====================[ profile ]======================\n"); typedef std::pair prof_t; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); #endif return PMSuccess; } #ifdef PADDLE_MOBILE_FPGA template void Executor::InjectVariable(const Tensor &t, std::string var_name) { Variable *g_feed_value = program_.scope->Var(var_name); Tensor *feed_tensor = g_feed_value->template GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); } template void Executor::FeedData(const Tensor &t) { InjectVariable(t, "feed0"); } template void Executor::FeedData(const std::vector &v) { auto input_size = v.size(); auto vars = program_.scope->VarContain("feed"); PADDLE_MOBILE_ENFORCE(input_size == vars.size(), "input data number not correct"); for (int i = 0; i < input_size; i++) { auto var = program_.scope->Var("feed", i); auto feed_tensor = var->template GetMutable(); feed_tensor->external_data = v[i]; } } template void Executor::GetResults(std::vector *v) { auto output_size = v->size(); PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output"); auto vars = program_.scope->VarContain("fetch"); PADDLE_MOBILE_ENFORCE(output_size == vars.size(), "output data number not correct"); for (int i = 0; i < output_size; i++) { auto var = program_.scope->Var("fetch", i); auto fetch_tensor = var->template GetMutable(); (*v)[i] = fetch_tensor->template data(); } } template std::shared_ptr Executor::FetchResult(int id) { auto &ops = ops_of_block0_; PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range"); auto op = id < 0 ? ops[ops.size() - 1] : ops[id]; auto output_map = op->Outputs(); std::vector out_keys = op->GetOutKeys(); PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output"); auto *output_tensor = GetVarValue(out_keys[0], output_map, *(program_.scope)); return std::make_shared(Tensor(*output_tensor)); } template void Executor::Predict_From_To(int start, int end) { auto &ops = ops_of_block0_; end = end < 0 ? static_cast(ops.size()) : end; PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(), "start or end parameter is wrong"); #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = start; i < end; i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif DLOG << "Running op: " << i << " " << ops[i]->Type(); ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } } template void Executor::Predict_From(int start) { Predict_From_To(start); } template void Executor::Predict_To(int end) { Predict_From_To(0, end); } #endif #ifdef PADDLE_MOBILE_CL template <> void Executor::InitNoPersistableMemory( const Tensor &input_tensor) { DLOG << "CL InitNoPersistableMemory "; for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto cl_image = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } } else { if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); DDim tensor_dim = cl_image->dims(); DDim new_dim = make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2], input_tensor.dims()[3]}); cl_image->Resize(new_dim); cl_image->InitEmptyImage(context, command_queue, new_dim); } } } } std::shared_ptr output = GetOutput("fetch"); output->Resize(input_tensor.dims()); output->mutable_data(); } template <> void Executor::SetInput(const Tensor &input, const std::string &var_name) { auto *target_var = program_.scope->FindVar(var_name); PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist", var_name.c_str()); auto *target_tensor = target_var->template GetMutable(); DLOG << "config_.load_when_predict " << config_.load_when_predict; DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized(); DLOG << "target_tensor->dims() " << target_tensor->dims(); DLOG << "input.dims() " << input.dims(); DLOG << "input_dim_last_ " << input_dim_last_; if (config_.load_when_predict) { if (input_dim_last_ != input.dims()) { DLOG << "SetInput ---- > resize1"; target_tensor->Resize(input.dims()); target_tensor->mutable_data(); InitNoPersistableMemory(*target_tensor); } } else { DLOG << "SetInput ---- > resize2"; target_tensor->Resize(input.dims()); DLOG << "SetInput ---- > ShareDataWith"; } target_tensor->ShareDataWith(input); auto &dim = input.dims(); input_dim_last_ = static_cast(dim); } template void Executor::LoadMemory(const VarDesc var_desc, float *tensorInput, char **data) {} template <> void Executor::LoadMemory(const VarDesc var_desc, float *tensorInput, char **data) { // 1. version uint32_t version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 2 Lod information uint64_t *lod_level_ptr = new uint64_t(); memcpy(lod_level_ptr, (*data), sizeof(uint64_t)); uint64_t lod_level = *lod_level_ptr; delete lod_level_ptr; (*data) += sizeof(uint64_t); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *reinterpret_cast(*data); (*data) += sizeof(uint64_t); std::vector tmp(size / sizeof(size_t)); for (int k = 0; k < tmp.size(); ++k) { tmp[k] = *reinterpret_cast(*data); (*data) += sizeof(size_t); } } // 3. tensor version uint32_t tensor_version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 4. tensor desc int32_t size = *reinterpret_cast(*data); (*data) += sizeof(int32_t); std::unique_ptr buf(new char[size]); for (int m = 0; m < size; ++m) { buf.get()[m] = (*data)[m]; } (*data) += (sizeof(char) * size); const TensorDesc &desc = var_desc.Tensor_desc(); int memory_size = 1; for (auto l : desc.Dims()) { memory_size *= l; } void *memory = nullptr; int type_size = 4; memory = tensorInput; if (program_.quantification) { float min_value; float max_value; memcpy(&min_value, *data, sizeof(float)); memcpy(&max_value, *data + sizeof(float), sizeof(float)); *data += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; uint8_t *uint8_data = reinterpret_cast(*data); for (int k = 0; k < memory_size; ++k) { static_cast(memory)[k] = uint8_data[k] * factor + min_value; } *data += (memory_size * sizeof(uint8_t)); } else { for (int n = 0; n < memory_size; n++) { float value; memcpy(&value, *data + n * type_size, type_size); if (value < 1e-30 && value > -1e-30) { static_cast(memory)[n] = 0.0; } else { static_cast(memory)[n] = value; } } (*data) += (sizeof(char) * memory_size * type_size); } } template <> void Executor::InitMemory() { for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; cl_context context = program_.scope->GetCLScpoe()->Context(); const TensorDesc &desc = var_desc->Tensor_desc(); int numel = 1; for (auto l : desc.Dims()) { numel *= l; } DLOG << var_desc->Name(); float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &data); DDim ddim = make_ddim(desc.Dims()); // has not init cl_image->SetTensorData(tensorInput, ddim); delete origin_data; paddle_mobile::memory::Free(tensorInput); } else { if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const TensorDesc &desc = var_desc->Tensor_desc(); // DDim ddim = make_ddim(desc.Dims()); DDim ddim = cl_image->dims(); DLOG << var_desc->Name(); cl_image->InitEmptyImage(context, command_queue, ddim); } } } } } template <> void Executor::InitCombineMemory() { DLOG << "CL InitCombineMemory---- " << "config_.load_when_predict: " << config_.load_when_predict; char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { LOG(kLOG_INFO) << "use outter memory"; origin_data = reinterpret_cast(program_.combined_params_buf); } else { LOG(kLOG_INFO) << " begin init combine memory"; self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!"); float *data = reinterpret_cast(origin_data); for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } cl_context context = program_.scope->GetCLScpoe()->Context(); const TensorDesc &desc = var_desc->Tensor_desc(); DDim ddim = make_ddim(desc.Dims()); int numel = 1; for (int i = 0; i < ddim.size(); i++) { numel = numel * ddim[i]; } float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &origin_data); // has not init cl_image->SetTensorData(tensorInput, ddim); paddle_mobile::memory::Free(tensorInput); } else { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const TensorDesc &desc = var_desc->Tensor_desc(); DDim ddim = cl_image->dims(); // DDim ddim = make_ddim(desc.Dims()); cl_image->InitEmptyImage(context, command_queue, ddim); } } } if (self_alloc) { delete data; } LOG(kLOG_INFO) << " end init combine memory "; } #endif template class Executor; template class Executor; template class Executor; template class Executor; } // namespace framework } // namespace paddle_mobile