未验证 提交 ce760c9f 编写于 作者: L lilong12 提交者: GitHub

Revert "bug fix (#70)" (#71)

This reverts commit 01a4c474.
上级 01a4c474
import numpy as np
import sys
import os
word_title_num = 50
word_cont_num = 1024
word_att_num = 10
CLASS_NUM = 1284213
def pad_and_trunk(_list, fix_sz = -1):
if len(_list) > 0 and _list[0] == '':
_list = []
_list = _list[:fix_sz]
if len(_list) < fix_sz:
pad = ['0' for i in range(fix_sz - len(_list))]
_list.extend(pad)
return _list
def generate_reader(url2fea, topic2fea, _path, class_num=CLASS_NUM):
def reader():
print 'file open.'
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
if os.getenv("PADDLE_TRAINER_ENDPOINTS"):
trainer_count = len(os.getenv("PADDLE_TRAINER_ENDPOINTS").split(","))
else:
trainer_count = int(os.getenv("PADDLE_TRAINERS", "1"))
f = open(_path)
sample_index = 0
for line in f:
line = line.strip('\n')
if len(line) == 0:
continue
part = line.split('\t')
url = part[0]
title_ids = part[1]
content_ids = part[2]
label = int(part[3])
if sample_index % trainer_count != trainer_id:
sample_index += 1
continue
sample_index += 1
title_ids = pad_and_trunk(title_ids.split(','), word_title_num)
content_ids = pad_and_trunk(content_ids.split(','), word_cont_num)
title_input_x_train = np.asarray(title_ids, dtype='int64').reshape( (len(title_ids), 1) )
content_input_x_train = np.asarray(content_ids, dtype='int64').reshape( (len(content_ids), 1) )
label = np.array([label])
yield title_input_x_train, content_input_x_train, label
f.close()
print 'file close.'
return reader
if __name__ == '__main__':
#load_validation(url2fea, topic2fea, './data_makeup/merge_att_data/format_sample_v1/test.sample.shuffle')
'''
for (x1, x2, x3, y) in generate_batch_from_file(url2fea, topic2fea, \
'./data_makeup/merge_att_data/format_sample_v1/train.sample.shuffle', 50):
print x1[0], x2[0], x3[0], y[0]
break
'''
for x1, x2, x3, x4 in generate_reader(None, None, './data_makeup/merge_att_data/format_sample_v4/test.10w.sample.shuffle').reader():
print x1, x2, x3, x4
break
import os
import sys
from plsc import Entry
from plsc.models import BaseModel
import paddle
import paddle.fluid as fluid
from utils import LogUtil
import numpy as np
CLASS_NUM = 1284213
from data_loader import generate_reader
class UserModel(BaseModel):
def __init__(self, emb_dim=512):
self.emb_dim = emb_dim
def build_network(self,
input,
is_train=True):
title_ids = input.title_ids
content_ids = input.content_ids
label = input.label
vob_size = 1841178 + 1
#embedding layer
#current shape is [-1, seq_length, emb_dim]
word_title_sequence_input = fluid.layers.embedding(
input=title_ids, size=[vob_size, 128], is_sparse=False,
param_attr=fluid.ParamAttr(name='word_embedding'))
word_cont_sequence_input = fluid.layers.embedding(
input=content_ids, size=[vob_size, 128], is_sparse=False,
param_attr=fluid.ParamAttr(name='word_embedding'))
#current shape is [-1, emb_dim, seq_length]
word_title_sequence_input = fluid.layers.transpose(word_title_sequence_input, perm=[0, 2, 1], name='title_transpose')
word_cont_sequence_input = fluid.layers.transpose(word_cont_sequence_input, perm=[0, 2, 1], name='cont_transpose')
#current shape is [-1, emb_dim, 1, seq_length], which is NCHW format
_shape = word_title_sequence_input.shape
word_title_sequence_input = fluid.layers.reshape(x=word_title_sequence_input,
shape=[_shape[0], _shape[1], 1, _shape[2]], inplace=True, name='title_reshape')
_shape = word_cont_sequence_input.shape
word_cont_sequence_input = fluid.layers.reshape(x=word_cont_sequence_input,
shape=[_shape[0], _shape[1], 1, _shape[2]], inplace=True, name='cont_reshape')
word_title_win_3 = fluid.layers.conv2d(input=word_title_sequence_input, num_filters=128,
filter_size=(1,3), stride=(1,1), padding=(0,1), act='relu',
name='word_title_win_3_conv')
word_title_x = fluid.layers.pool2d(input=word_title_win_3, pool_size=(1,4),
pool_type='max', pool_stride=(1,4),
name='word_title_win_3_pool')
word_cont_win_3 = fluid.layers.conv2d(input=word_cont_sequence_input, num_filters=128,
filter_size=(1,3), stride=(1,1), padding=(0,1), act='relu',
name='word_cont_win_3_conv')
word_cont_x = fluid.layers.pool2d(input=word_cont_win_3, pool_size=(1,20),
pool_type='max', pool_stride=(1,20),
name='word_cont_win_3_pool')
print('word_title_x.shape:', word_title_x.shape)
print('word_cont_x.shape:', word_cont_x.shape)
x_concat = fluid.layers.concat(input=[word_title_x, word_cont_x], axis=3, name='feature_concat')
x_flatten = fluid.layers.flatten(x=x_concat, axis=1, name='feature_flatten')
x_fc = fluid.layers.fc(input=x_flatten, size=self.emb_dim, act="relu", name='final_fc')
return x_fc
def train(url2fea_path, topic2fea_path, train_path, val_path, model_save_dir):
ins = Entry()
ins.set_with_test(False)
ins.set_train_epochs(20)
#load id features
word_title_num = 50
word_cont_num = 1024
batch_size = int(os.getenv("BATCH_SIZE", "64"))
input_info = [{'name': 'title_ids',
'shape': [-1, word_title_num, 1],
'dtype': 'int64'},
{'name': 'content_ids',
'shape': [-1, word_cont_num, 1],
'dtype': 'int64'},
{'name': 'label',
'shape': [-1, 1],
'dtype': 'int64'}
]
ins.set_input_info(input_info)
ins.set_class_num(CLASS_NUM)
emb_dim = int(os.getenv("EMB_DIM", "512"))
model = UserModel(emb_dim=emb_dim)
ins.set_model(model)
ins.set_train_batch_size(batch_size)
sgd_optimizer = fluid.optimizer.Adam(learning_rate=1e-3)
ins.set_optimizer(sgd_optimizer)
train_reader = generate_reader(None, None, train_path)
ins.train_reader = train_reader
ins.set_train_epochs(20)
ins.set_model_save_dir("./saved_model")
ins.set_loss_type('dist_softmax')
ins.train()
if __name__ == "__main__":
data = './package/'
url2fea_path = data + 'click_search_all.url_title_cont.seg.lower.id'
topic2fea_path = data + 'click_search_all.att.seg.id'
train_path = data +'train.sample.shuffle.label_expand'
val_path = data +'test.10w.sample.shuffle.label_expand'
model_save_dir = data + 'saved_models'
train(url2fea_path, topic2fea_path, train_path, val_path, model_save_dir)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册