Linux kernel release 2.6.xx These are the release notes for Linux version 2.6. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a Unix clone written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management and TCP/IP networking. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Linux was first developed for 386/486-based PCs. These days it also runs on ARMs, DEC Alphas, SUN Sparcs, M68000 machines (like Atari and Amiga), MIPS and PowerPC, and others. DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, and HTML, among others. After installation, "make psdocs", "make pdfdocs", or "make htmldocs" will render the documentation in the requested format. INSTALLING the kernel: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: gzip -cd linux-2.6.XX.tar.gz | tar xvf - or bzip2 -dc linux-2.6.XX.tar.bz2 | tar xvf - Replace "XX" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 2.6.xx releases by patching. Patches are distributed in the traditional gzip and the new bzip2 format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-2.6.xx) and execute: gzip -cd ../patch-2.6.xx.gz | patch -p1 or bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1 (repeat xx for all versions bigger than the version of your current source tree, _in_order_) and you should be ok. You may want to remove the backup files (xxx~ or xxx.orig), and make sure that there are no failed patches (xxx# or xxx.rej). If there are, either you or me has made a mistake. Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - If you are upgrading between releases using the stable series patches (for example, patch-2.6.xx.y), note that these "dot-releases" are not incremental and must be applied to the 2.6.xx base tree. For example, if your base kernel is 2.6.12 and you want to apply the 2.6.12.3 patch, you do not and indeed must not first apply the 2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel version 2.6.12.2 and want to jump to 2.6.12.3, you must first reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying the 2.6.12.3 patch. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 2.6.xx kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-2.6.N build directory: /home/name/build/kernel To configure and build the kernel use: cd /usr/src/linux-2.6.N make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternate configuration commands are: "make menuconfig" Text based color menus, radiolists & dialogs. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (Gtk) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file. "make silentoldconfig" Like above, but avoids cluttering the screen with questions already answered. NOTES on "make config": - having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - the "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have gcc 2.95.3 available. gcc 2.91.66 (egcs-1.1.2), and gcc 2.7.2.3 are known to miscompile some parts of the kernel, and are *no longer supported*. Also remember to upgrade your binutils package (for as/ld/nm and company) if necessary. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@osdl.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump. This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops. Alternately you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. - Alternately, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.
PLSC: 飞桨大规模分类库
简介
深度学习中用于解决多分类问题的深度神经网络的最后一层通常是全连接层和Softmax的组合层,并采用交叉熵(Cross-Entropy)算法计算神经网络的损失函数。由于全连接层的参数量随着分类类别数的增长线性增长,当分类类别数相当大时,神经网络的训练会面临下面两个主要挑战:
-
参数量过大,超出单个GPU卡的显存容量:假设分类网络最后一层隐层的输出维度为512,那么当分类类别数为一百万时,最后一层全连接层参数的大小约为2GB(假设以32比特浮点数表示参数)。当分类问题的类别数为一亿时(例如,对自然界中的生物进行分类),则最后一层全连接层参数的大小接近200GB,远远超过当前GPU的显存容量。
-
参数量较大,同步训练方式下通信开销较大:数据并行训练方式下,所有GPU卡之间需要同步参数的梯度信息,以完成参数值的同步更新。当参数数量较大时,参数的梯度信息数据量同样较大,从而导致参数梯度信息的通信开销较大,影响训练速度。
考虑到全接连层的线性可分性,可以将全连接层参数切分到多张GPU卡,减少每张GPU卡的参数存储量。
以下图为例,全连接层参数按行切分到不同的GPU卡上。每次训练迭代过程中,各张GPU卡分别以各自的训练数据计算隐层的输出特征,并通过集合通信操作AllGather得到汇聚后的特征。接着,各张GPU卡以汇聚后的特征和部分全连接层参数计算部分logit值(partial logit),并基于此计算神经网络的损失值。
飞桨大规模分类(PLSC: PaddlePaddle Large Scale Classification)库是基于飞桨平台构建的超大规模分类库,为用户提供从训练到部署的大规模分类问题全流程解决方案。
PLSC特性
- 支持超大规模分类:单机8张V100 GPU配置下支持的最大类别数扩大2.52倍,支持的类别数随GPU卡数的增加而增加;
- 训练速度快:单机8张V100 GPU配置下,基于ResNet50模型的百万类别分类训练速度2,122.56 images/s, 并支持多机分布式训练和混合精度训练;
- 支持训练卡数的调整:加载模型参数的热启动训练可以使用和预训练不同的GPU卡数,并自动进行参数转换;
- base64格式图像数据预处理:提供base64格式图像数据的预处理,包括数据的全局shuffle,数据自动切分;
- 支持自定义模型:PLSC内建ResNet50、ResNet101和ResNet152模型,并支持用户自定义模型;
- 支持模型参数在HDFS文件系统的自动上传和下载;
- 全流程解决方案:提供从训练到部署的大规模分类问题全流程解决方案。
快速开始
请参考快速开始获取安装指南和快速使用示例。
预测部署
请参考预测部署指南获取预测部署使用指南。
高阶功能
请参考进阶指南获取更多高阶功能的使用指南,如HDFS文件系统的自动上传和下载等。
API参考
请参考API参考获取API使用信息。
预训练模型和性能
预训练模型
我们提供了下面的预训练模型,以帮助用户对下游任务进行fine-tuning。
模型 | 描述 |
---|---|
resnet50_distarcface_ms1m_arcface | 该模型使用ResNet50网络训练,数据集为MS1M-ArcFace,训练阶段使用的loss_type为'dist_arcface',预训练模型在lfw验证集上的验证精度为0.99817。 |
训练精度
模型 | 训练集 | lfw | agendb_30 | cfp_ff | cfp_fp | MegaFace (Id/Ver) |
---|---|---|---|---|---|---|
ResNet50 | MS1M-ArcFace | 0.99817 | 0.99827 | 0.99857 | 0.96314 | 0.98000/0.99300 |
ResNet50 | CASIA | 0.98950 | 0.90950 | 0.99057 | 0.91500 | N/A |
备注:上述模型训练使用的loss_type为'dist_arcface'。更多关于ArcFace的内容请参考ArcFace: Additive Angular Margin Loss for Deep Face Recognition