Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PLSC
提交
59f79be2
P
PLSC
项目概览
PaddlePaddle
/
PLSC
通知
10
Star
3
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
5
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PLSC
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
5
Issue
5
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
59f79be2
编写于
7月 01, 2020
作者:
L
lilong12
提交者:
GitHub
7月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support universal inputs (#56)
* add support for universal input
上级
632a8f3d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
211 addition
and
63 deletion
+211
-63
plsc/entry.py
plsc/entry.py
+82
-58
plsc/models/base_model.py
plsc/models/base_model.py
+3
-3
plsc/models/resnet.py
plsc/models/resnet.py
+1
-2
plsc/utils/input_field.py
plsc/utils/input_field.py
+125
-0
未找到文件。
plsc/entry.py
浏览文件 @
59f79be2
...
...
@@ -17,14 +17,13 @@ from __future__ import print_function
import
errno
import
json
import
logging
import
math
import
os
import
shutil
import
subprocess
import
sys
import
tempfile
import
time
import
logging
import
numpy
as
np
import
paddle
...
...
@@ -43,6 +42,7 @@ from .utils import jpeg_reader as reader
from
.utils.learning_rate
import
lr_warmup
from
.utils.parameter_converter
import
ParameterConverter
from
.utils.verification
import
evaluate
from
.utils.input_field
import
InputField
log_handler
=
logging
.
StreamHandler
()
log_format
=
logging
.
Formatter
(
...
...
@@ -116,7 +116,6 @@ class Entry(object):
self
.
val_targets
=
self
.
config
.
val_targets
self
.
dataset_dir
=
self
.
config
.
dataset_dir
self
.
num_classes
=
self
.
config
.
num_classes
self
.
image_shape
=
self
.
config
.
image_shape
self
.
loss_type
=
self
.
config
.
loss_type
self
.
margin
=
self
.
config
.
margin
self
.
scale
=
self
.
config
.
scale
...
...
@@ -142,6 +141,15 @@ class Entry(object):
self
.
lr_decay_factor
=
0.1
self
.
log_period
=
200
self
.
input_info
=
[{
'name'
:
'image'
,
'shape'
:
[
-
1
,
3
,
224
,
224
],
'dtype'
:
'float32'
},
{
'name'
:
'label'
,
'shape'
:[
-
1
,
1
],
'dtype'
:
'int64'
}
]
self
.
input_field
=
None
logger
.
info
(
'='
*
30
)
logger
.
info
(
"Default configuration:"
)
for
key
in
self
.
config
:
...
...
@@ -152,6 +160,31 @@ class Entry(object):
logger
.
info
(
'default log period: {}'
.
format
(
self
.
log_period
))
logger
.
info
(
'='
*
30
)
def
set_input_info
(
self
,
input
):
"""
Set the information of inputs which is a list or tuple. Each element
is a dict which contains the info of a input, including name, dtype
and shape.
"""
if
not
(
isinstance
(
input
,
list
)
or
isinstance
(
input
,
tuple
)):
raise
ValueError
(
"The type of 'input' must be list or tuple."
)
has_label
=
False
for
element
in
input
:
assert
isinstance
(
element
,
dict
),
(
"The type of elements for input must be dict"
)
assert
'name'
in
element
.
keys
(),
(
"Every element has to contain the key 'name'"
)
assert
'shape'
in
element
.
keys
(),
(
"Every element has to contain the key 'shape'"
)
assert
'dtype'
in
element
.
keys
(),
(
"Every element has to contain the key 'dtype'"
)
if
element
[
'name'
]
==
'label'
:
has_label
=
True
assert
has_label
,
"The input must contain a field named 'label'"
self
.
input_info
=
input
def
set_val_targets
(
self
,
targets
):
"""
Set the names of validation datasets, separated by comma.
...
...
@@ -314,12 +347,6 @@ class Entry(object):
self
.
loss_type
=
loss_type
logger
.
info
(
"Set loss_type to {}."
.
format
(
loss_type
))
def
set_image_shape
(
self
,
shape
):
if
not
isinstance
(
shape
,
(
list
,
tuple
)):
raise
ValueError
(
"Shape must be of type list or tuple"
)
self
.
image_shape
=
shape
logger
.
info
(
"Set image_shape to {}."
.
format
(
shape
))
def
set_optimizer
(
self
,
optimizer
):
if
not
isinstance
(
optimizer
,
Optimizer
):
raise
ValueError
(
"Optimizer must be of type Optimizer"
)
...
...
@@ -404,7 +431,6 @@ class Entry(object):
trainer_id
=
self
.
trainer_id
num_trainers
=
self
.
num_trainers
image_shape
=
[
int
(
m
)
for
m
in
self
.
image_shape
]
# model definition
model
=
self
.
model
if
model
is
None
:
...
...
@@ -413,15 +439,11 @@ class Entry(object):
startup_program
=
self
.
startup_program
with
fluid
.
program_guard
(
main_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
emb
,
loss
,
prob
=
model
.
get_output
(
input
=
image
,
label
=
label
,
input_field
=
InputField
(
self
.
input_info
)
input_field
.
build
()
self
.
input_field
=
input_field
emb
,
loss
,
prob
=
model
.
get_output
(
input
=
input_field
,
num_ranks
=
num_trainers
,
rank_id
=
trainer_id
,
is_train
=
is_train
,
...
...
@@ -449,7 +471,7 @@ class Entry(object):
num_or_sections
=
num_trainers
)
prob
=
fluid
.
layers
.
concat
(
prob_list
,
axis
=
1
)
label_all
=
fluid
.
layers
.
collective
.
_c_allgather
(
label
,
input_field
.
label
,
nranks
=
num_trainers
,
use_calc_stream
=
True
)
acc1
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
...
...
@@ -461,10 +483,10 @@ class Entry(object):
else
:
if
self
.
calc_train_acc
:
acc1
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
label
=
input_field
.
label
,
k
=
1
)
acc5
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
label
=
input_field
.
label
,
k
=
5
)
optimizer
=
None
...
...
@@ -489,7 +511,7 @@ class Entry(object):
def
get_files_from_hdfs
(
self
):
assert
self
.
fs_checkpoint_dir
,
\
logger
.
error
(
"Please set the fs_checkpoint_dir paramerters for "
"set_hdfs_info to get models from hdfs."
)
"set_
llllll
hdfs_info to get models from hdfs."
)
self
.
fs_checkpoint_dir
=
os
.
path
.
join
(
self
.
fs_checkpoint_dir
,
'*'
)
cmd
=
"hadoop fs -D fs.default.name="
cmd
+=
self
.
fs_name
+
" "
...
...
@@ -631,15 +653,10 @@ class Entry(object):
startup_program
=
self
.
startup_program
with
fluid
.
program_guard
(
main_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
emb
=
model
.
build_network
(
input
=
image
,
label
=
label
,
input_field
=
InputField
(
self
.
input_info
)
input_field
.
build
()
emb
=
model
.
build_network
(
input
=
input_field
,
is_train
=
False
)
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
0
))
...
...
@@ -658,8 +675,12 @@ class Entry(object):
logger
.
info
(
"model_save_dir for inference model ({}) exists, "
"we will overwrite it."
.
format
(
self
.
model_save_dir
))
shutil
.
rmtree
(
self
.
model_save_dir
)
feed_var_names
=
[]
for
name
in
input_field
.
feed_list_str
:
if
name
==
"label"
:
continue
feed_var_names
.
append
(
name
)
fluid
.
io
.
save_inference_model
(
self
.
model_save_dir
,
feeded_var_names
=
[
image
.
name
]
,
feeded_var_names
=
feed_var_names
,
target_vars
=
[
emb
],
executor
=
exe
,
main_program
=
main_program
)
...
...
@@ -678,7 +699,6 @@ class Entry(object):
def
predict
(
self
):
model_name
=
self
.
model_name
image_shape
=
[
int
(
m
)
for
m
in
self
.
image_shape
]
# model definition
model
=
self
.
model
if
model
is
None
:
...
...
@@ -687,15 +707,10 @@ class Entry(object):
startup_program
=
self
.
startup_program
with
fluid
.
program_guard
(
main_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
emb
=
model
.
build_network
(
input
=
image
,
label
=
label
,
input_field
=
InputField
(
self
.
input_info
)
input_field
.
build
()
emb
=
model
.
build_network
(
input
=
input_field
,
is_train
=
False
)
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
0
))
...
...
@@ -709,20 +724,20 @@ class Entry(object):
load_for_train
=
False
)
if
self
.
predict_reader
is
None
:
predict_reader
=
paddle
.
batch
(
reader
.
arc_train
(
self
.
dataset_dir
,
self
.
num_classes
),
batch_size
=
self
.
train_batch_size
)
predict_reader
=
reader
.
arc_train
(
self
.
dataset_dir
,
self
.
num_classes
)
else
:
predict_reader
=
self
.
predict_reader
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
'image'
,
'label'
],
program
=
main_program
)
input_field
.
loader
.
set_sample_generator
(
predict_reader
,
batch_size
=
self
.
train_batch_size
,
places
=
place
)
fetch_list
=
[
emb
.
name
]
for
data
in
predict_reader
()
:
for
data
in
input_field
.
loader
:
emb
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
)
,
feed
=
data
,
fetch_list
=
fetch_list
,
use_program_cache
=
True
)
print
(
"emb: "
,
emb
)
...
...
@@ -741,6 +756,14 @@ class Entry(object):
for
j
in
range
(
len
(
data_list
)):
data
=
data_list
[
j
]
embeddings
=
None
# For multi-card test, the dataset can be partitioned into two
# part. For the first part, the total number of samples is
# divisiable by the number of cards. And then, these samples
# are split on different cards and tested parallely. For the
# second part, these samples are tested on all cards but only
# the result of the first card is used.
# The number of steps for parallel test.
parallel_test_steps
=
data
.
shape
[
0
]
//
real_test_batch_size
for
idx
in
range
(
parallel_test_steps
):
start
=
idx
*
real_test_batch_size
...
...
@@ -876,7 +899,7 @@ class Entry(object):
load_for_train
=
False
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
'image'
,
'label'
]
,
feed_list
=
self
.
input_field
.
feed_list_str
,
program
=
test_program
)
fetch_list
=
[
emb_name
]
...
...
@@ -940,9 +963,10 @@ class Entry(object):
else
:
train_reader
=
self
.
train_reader
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
'image'
,
'label'
],
program
=
origin_prog
)
self
.
input_field
.
loader
.
set_sample_generator
(
train_reader
,
batch_size
=
self
.
train_batch_size
,
places
=
place
)
if
self
.
calc_train_acc
:
fetch_list
=
[
loss
.
name
,
global_lr
.
name
,
...
...
@@ -958,19 +982,19 @@ class Entry(object):
self
.
train_pass_id
=
pass_id
train_info
=
[[],
[],
[],
[]]
local_train_info
=
[[],
[],
[],
[]]
for
batch_id
,
data
in
enumerate
(
train_reader
()
):
for
batch_id
,
data
in
enumerate
(
self
.
input_field
.
loader
):
nsamples
+=
global_batch_size
t1
=
time
.
time
()
acc1
=
None
acc5
=
None
if
self
.
calc_train_acc
:
loss
,
lr
,
acc1
,
acc5
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
)
,
feed
=
data
,
fetch_list
=
fetch_list
,
use_program_cache
=
True
)
else
:
loss
,
lr
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
)
,
feed
=
data
,
fetch_list
=
fetch_list
,
use_program_cache
=
True
)
t2
=
time
.
time
()
...
...
plsc/models/base_model.py
浏览文件 @
59f79be2
...
...
@@ -33,7 +33,7 @@ class BaseModel(object):
def
__init__
(
self
):
super
(
BaseModel
,
self
).
__init__
()
def
build_network
(
self
,
input
,
label
,
is_train
=
True
):
def
build_network
(
self
,
input
,
is_train
=
True
):
"""
Construct the custom model, and we will add the distributed fc layer
at the end of your model automatically.
...
...
@@ -43,7 +43,6 @@ class BaseModel(object):
def
get_output
(
self
,
input
,
label
,
num_classes
,
num_ranks
=
1
,
rank_id
=
0
,
...
...
@@ -76,7 +75,8 @@ class BaseModel(object):
"Supported loss types: {}, but given: {}"
.
format
(
supported_loss_types
,
loss_type
)
emb
=
self
.
build_network
(
input
,
label
,
is_train
)
emb
=
self
.
build_network
(
input
,
is_train
)
label
=
input
.
label
prob
=
None
loss
=
None
if
loss_type
==
"softmax"
:
...
...
plsc/models/resnet.py
浏览文件 @
59f79be2
...
...
@@ -27,7 +27,6 @@ class ResNet(BaseModel):
def
build_network
(
self
,
input
,
label
,
is_train
=
True
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
...
...
@@ -44,7 +43,7 @@ class ResNet(BaseModel):
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
input
=
input
.
image
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
pad
=
1
,
act
=
'prelu'
,
is_train
=
is_train
)
for
block
in
range
(
len
(
depth
)):
...
...
plsc/utils/input_field.py
0 → 100644
浏览文件 @
59f79be2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle.fluid
as
fluid
class
InputField
(
object
):
"""
A high-level API for handling inputs in PaddlePaddle.
"""
def
__init__
(
self
,
input_slots
=
[]):
self
.
shapes
=
[]
self
.
dtypes
=
[]
self
.
names
=
[]
self
.
lod_levels
=
[]
self
.
input_slots
=
{}
self
.
feed_list_str
=
[]
self
.
feed_list
=
[]
self
.
loader
=
None
if
input_slots
:
for
input_slot
in
input_slots
:
self
+=
input_slot
def
__add__
(
self
,
input_slot
):
if
isinstance
(
input_slot
,
list
)
or
isinstance
(
input_slot
,
tuple
):
name
=
input_slot
[
0
]
shape
=
input_slot
[
1
]
dtype
=
input_slot
[
2
]
lod_level
=
input_slot
[
3
]
if
len
(
input_slot
)
==
4
else
0
if
isinstance
(
input_slot
,
dict
):
name
=
input_slot
[
"name"
]
shape
=
input_slot
[
"shape"
]
dtype
=
input_slot
[
"dtype"
]
lod_level
=
input_slot
[
"lod_level"
]
if
"lod_level"
in
input_slot
else
0
self
.
shapes
.
append
(
shape
)
self
.
dtypes
.
append
(
dtype
)
self
.
names
.
append
(
name
)
self
.
lod_levels
.
append
(
lod_level
)
self
.
feed_list_str
.
append
(
name
)
return
self
def
__getattr__
(
self
,
name
):
if
name
not
in
self
.
input_slots
:
raise
Warning
(
"the attr %s has not been defined yet."
%
name
)
return
None
return
self
.
input_slots
[
name
]
def
build
(
self
,
capacity
=
64
,
iterable
=
True
):
for
_name
,
_shape
,
_dtype
,
_lod_level
in
zip
(
self
.
names
,
self
.
shapes
,
self
.
dtypes
,
self
.
lod_levels
):
self
.
input_slots
[
_name
]
=
fluid
.
data
(
name
=
_name
,
shape
=
_shape
,
dtype
=
_dtype
,
lod_level
=
_lod_level
)
for
name
in
self
.
feed_list_str
:
self
.
feed_list
.
append
(
self
.
input_slots
[
name
])
self
.
loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
feed_list
,
capacity
=
capacity
,
iterable
=
iterable
,
use_double_buffer
=
True
)
if
__name__
==
"__main__"
:
mnist_input_slots
=
[{
"name"
:
"image"
,
"shape"
:
(
-
1
,
32
,
32
,
1
),
"dtype"
:
"int32"
},
{
"name"
:
"label"
,
"shape"
:
[
-
1
,
1
],
"dtype"
:
"int64"
}]
input_field
=
InputField
(
mnist_input_slots
)
input_field
+=
{
"name"
:
"large_image"
,
"shape"
:
(
-
1
,
64
,
64
,
1
),
"dtype"
:
"int32"
}
input_field
+=
{
"name"
:
"large_color_image"
,
"shape"
:
(
-
1
,
64
,
64
,
3
),
"dtype"
:
"int32"
}
input_field
.
build
()
print
(
input_field
.
feed_list
)
print
(
input_field
.
image
)
print
(
input_field
.
large_color_image
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录