提交 a43b5a2e 编写于 作者: Z Zhong Hui

add graphsaint

上级 d016a9d1
...@@ -321,3 +321,43 @@ def alias_sample_build_table(np.ndarray[np.float64_t, ndim=1] probs): ...@@ -321,3 +321,43 @@ def alias_sample_build_table(np.ndarray[np.float64_t, ndim=1] probs):
if alias[l_i] < 1: if alias[l_i] < 1:
smaller_num.push_back(l_i) smaller_num.push_back(l_i)
return alias, events return alias, events
@cython.boundscheck(False)
@cython.wraparound(False)
def adj_extract(
np.ndarray[np.int64_t, ndim=1] adj_indptr,
np.ndarray[np.int64_t, ndim=1] sorted_v,
vector[long long] sampled_nodes,
):
"""
Extract all eids of given sampled_nodes for the origin graph.
ret_edge_index: edge ids between sampled_nodes.
Refers: https://github.com/GraphSAINT/GraphSAINT
"""
cdef long long i, v, j
cdef long long num_v_orig, num_v_sub
cdef long long start_neigh, end_neigh
cdef vector[int] _arr_bit
cdef vector[long long] ret_edge_index
num_v_orig = adj_indptr.size-1
_arr_bit = vector[int](num_v_orig,-1)
num_v_sub = sampled_nodes.size()
i = 0
with nogil:
while i < num_v_sub:
_arr_bit[sampled_nodes[i]] = i
i = i + 1
i = 0
while i < num_v_sub:
v = sampled_nodes[i]
start_neigh = adj_indptr[v]
end_neigh = adj_indptr[v+1]
j = start_neigh
while j < end_neigh:
if _arr_bit[sorted_v[j]] > -1:
ret_edge_index.push_back(j)
j = j + 1
i = i + 1
return ret_edge_index
...@@ -55,7 +55,7 @@ def edge_hash(src, dst): ...@@ -55,7 +55,7 @@ def edge_hash(src, dst):
def graphsage_sample(graph, nodes, samples, ignore_edges=[]): def graphsage_sample(graph, nodes, samples, ignore_edges=[]):
"""Implement of graphsage sample. """Implement of graphsage sample.
Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf. Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf.
Args: Args:
...@@ -63,7 +63,7 @@ def graphsage_sample(graph, nodes, samples, ignore_edges=[]): ...@@ -63,7 +63,7 @@ def graphsage_sample(graph, nodes, samples, ignore_edges=[]):
nodes: Sample starting from nodes nodes: Sample starting from nodes
samples: A list, number of neighbors in each layer samples: A list, number of neighbors in each layer
ignore_edges: list of edge(src, dst) will be ignored. ignore_edges: list of edge(src, dst) will be ignored.
Return: Return:
A list of subgraphs A list of subgraphs
""" """
...@@ -129,7 +129,7 @@ def alias_sample(size, alias, events): ...@@ -129,7 +129,7 @@ def alias_sample(size, alias, events):
size: Output shape. size: Output shape.
alias: The alias table build by `alias_sample_build_table`. alias: The alias table build by `alias_sample_build_table`.
events: The events table build by `alias_sample_build_table`. events: The events table build by `alias_sample_build_table`.
Return: Return:
samples: The generated random samples. samples: The generated random samples.
""" """
...@@ -283,13 +283,13 @@ def metapath_randomwalk(graph, ...@@ -283,13 +283,13 @@ def metapath_randomwalk(graph,
Args: Args:
graph: instance of pgl heterogeneous graph graph: instance of pgl heterogeneous graph
start_nodes: start nodes to generate walk start_nodes: start nodes to generate walk
metapath: meta path for sample nodes. metapath: meta path for sample nodes.
e.g: "c2p-p2a-a2p-p2c" e.g: "c2p-p2a-a2p-p2c"
walk_length: the walk length walk_length: the walk length
Return: Return:
a list of metapath walks. a list of metapath walks.
""" """
edge_types = metapath.split('-') edge_types = metapath.split('-')
...@@ -390,18 +390,18 @@ def pinsage_sample(graph, ...@@ -390,18 +390,18 @@ def pinsage_sample(graph,
norm_bais=1.0, norm_bais=1.0,
ignore_edges=set()): ignore_edges=set()):
"""Implement of graphsage sample. """Implement of graphsage sample.
Reference paper: . Reference paper: .
Args: Args:
graph: A pgl graph instance graph: A pgl graph instance
nodes: Sample starting from nodes nodes: Sample starting from nodes
samples: A list, number of neighbors in each layer samples: A list, number of neighbors in each layer
top_k: select the top_k visit count nodes to construct the edges top_k: select the top_k visit count nodes to construct the edges
proba: the probability to return the origin node proba: the probability to return the origin node
norm_bais: the normlization for the visit count norm_bais: the normlization for the visit count
ignore_edges: list of edge(src, dst) will be ignored. ignore_edges: list of edge(src, dst) will be ignored.
Return: Return:
A list of subgraphs A list of subgraphs
""" """
...@@ -476,3 +476,38 @@ def pinsage_sample(graph, ...@@ -476,3 +476,38 @@ def pinsage_sample(graph,
layer_nodes[0], dtype="int64") layer_nodes[0], dtype="int64")
return subgraphs return subgraphs
def graph_saint_random_walk_sample(graph,
nodes,
max_depth,
alias_name=None,
events_name=None):
"""Implement of graph saint random walk sample.
First, this function will get random walks path for given nodes and depth.
Then, it will create subgraph from all sampled nodes.
Reference Paper: https://arxiv.org/abs/1907.04931
Args:
graph: A pgl graph instance
nodes: Walk starting from nodes
max_depth: Max walking depth
Return:
a subgraph of sampled nodes.
"""
graph.indegree()
walks = deepwalk_sample(graph, nodes, max_depth, alias_name, events_name)
sample_nodes = []
for walk in walks:
sample_nodes.extend(walk)
sample_nodes = np.unique(sample_nodes)
eids = graph_kernel.adj_extract(graph._adj_dst_index._indptr,
graph._adj_dst_index._sorted_v,
sample_nodes)
subgraph = graph.subgraph(
nodes=sample_nodes, eid=eids, with_node_feat=True, with_edge_feat=True)
subgraph.node_feat["index"] = np.array(sample_nodes, dtype="int64")
return subgraph
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册