Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PGL
提交
a43b5a2e
P
PGL
项目概览
PaddlePaddle
/
PGL
通知
76
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
11
列表
看板
标记
里程碑
合并请求
1
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PGL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
11
Issue
11
列表
看板
标记
里程碑
合并请求
1
合并请求
1
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a43b5a2e
编写于
7月 01, 2020
作者:
Z
Zhong Hui
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add graphsaint
上级
d016a9d1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
85 addition
and
10 deletion
+85
-10
pgl/graph_kernel.pyx
pgl/graph_kernel.pyx
+40
-0
pgl/sample.py
pgl/sample.py
+45
-10
未找到文件。
pgl/graph_kernel.pyx
浏览文件 @
a43b5a2e
...
...
@@ -321,3 +321,43 @@ def alias_sample_build_table(np.ndarray[np.float64_t, ndim=1] probs):
if
alias
[
l_i
]
<
1
:
smaller_num
.
push_back
(
l_i
)
return
alias
,
events
@
cython
.
boundscheck
(
False
)
@
cython
.
wraparound
(
False
)
def
adj_extract
(
np
.
ndarray
[
np
.
int64_t
,
ndim
=
1
]
adj_indptr
,
np
.
ndarray
[
np
.
int64_t
,
ndim
=
1
]
sorted_v
,
vector
[
long
long
]
sampled_nodes
,
):
"""
Extract all eids of given sampled_nodes for the origin graph.
ret_edge_index: edge ids between sampled_nodes.
Refers: https://github.com/GraphSAINT/GraphSAINT
"""
cdef
long
long
i
,
v
,
j
cdef
long
long
num_v_orig
,
num_v_sub
cdef
long
long
start_neigh
,
end_neigh
cdef
vector
[
int
]
_arr_bit
cdef
vector
[
long
long
]
ret_edge_index
num_v_orig
=
adj_indptr
.
size
-
1
_arr_bit
=
vector
[
int
](
num_v_orig
,
-
1
)
num_v_sub
=
sampled_nodes
.
size
()
i
=
0
with
nogil
:
while
i
<
num_v_sub
:
_arr_bit
[
sampled_nodes
[
i
]]
=
i
i
=
i
+
1
i
=
0
while
i
<
num_v_sub
:
v
=
sampled_nodes
[
i
]
start_neigh
=
adj_indptr
[
v
]
end_neigh
=
adj_indptr
[
v
+
1
]
j
=
start_neigh
while
j
<
end_neigh
:
if
_arr_bit
[
sorted_v
[
j
]]
>
-
1
:
ret_edge_index
.
push_back
(
j
)
j
=
j
+
1
i
=
i
+
1
return
ret_edge_index
pgl/sample.py
浏览文件 @
a43b5a2e
...
...
@@ -55,7 +55,7 @@ def edge_hash(src, dst):
def
graphsage_sample
(
graph
,
nodes
,
samples
,
ignore_edges
=
[]):
"""Implement of graphsage sample.
Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf.
Args:
...
...
@@ -63,7 +63,7 @@ def graphsage_sample(graph, nodes, samples, ignore_edges=[]):
nodes: Sample starting from nodes
samples: A list, number of neighbors in each layer
ignore_edges: list of edge(src, dst) will be ignored.
Return:
A list of subgraphs
"""
...
...
@@ -129,7 +129,7 @@ def alias_sample(size, alias, events):
size: Output shape.
alias: The alias table build by `alias_sample_build_table`.
events: The events table build by `alias_sample_build_table`.
Return:
samples: The generated random samples.
"""
...
...
@@ -283,13 +283,13 @@ def metapath_randomwalk(graph,
Args:
graph: instance of pgl heterogeneous graph
start_nodes: start nodes to generate walk
metapath: meta path for sample nodes.
metapath: meta path for sample nodes.
e.g: "c2p-p2a-a2p-p2c"
walk_length: the walk length
Return:
a list of metapath walks.
a list of metapath walks.
"""
edge_types
=
metapath
.
split
(
'-'
)
...
...
@@ -390,18 +390,18 @@ def pinsage_sample(graph,
norm_bais
=
1.0
,
ignore_edges
=
set
()):
"""Implement of graphsage sample.
Reference paper: .
Args:
graph: A pgl graph instance
nodes: Sample starting from nodes
samples: A list, number of neighbors in each layer
top_k: select the top_k visit count nodes to construct the edges
proba: the probability to return the origin node
top_k: select the top_k visit count nodes to construct the edges
proba: the probability to return the origin node
norm_bais: the normlization for the visit count
ignore_edges: list of edge(src, dst) will be ignored.
Return:
A list of subgraphs
"""
...
...
@@ -476,3 +476,38 @@ def pinsage_sample(graph,
layer_nodes
[
0
],
dtype
=
"int64"
)
return
subgraphs
def
graph_saint_random_walk_sample
(
graph
,
nodes
,
max_depth
,
alias_name
=
None
,
events_name
=
None
):
"""Implement of graph saint random walk sample.
First, this function will get random walks path for given nodes and depth.
Then, it will create subgraph from all sampled nodes.
Reference Paper: https://arxiv.org/abs/1907.04931
Args:
graph: A pgl graph instance
nodes: Walk starting from nodes
max_depth: Max walking depth
Return:
a subgraph of sampled nodes.
"""
graph
.
indegree
()
walks
=
deepwalk_sample
(
graph
,
nodes
,
max_depth
,
alias_name
,
events_name
)
sample_nodes
=
[]
for
walk
in
walks
:
sample_nodes
.
extend
(
walk
)
sample_nodes
=
np
.
unique
(
sample_nodes
)
eids
=
graph_kernel
.
adj_extract
(
graph
.
_adj_dst_index
.
_indptr
,
graph
.
_adj_dst_index
.
_sorted_v
,
sample_nodes
)
subgraph
=
graph
.
subgraph
(
nodes
=
sample_nodes
,
eid
=
eids
,
with_node_feat
=
True
,
with_edge_feat
=
True
)
subgraph
.
node_feat
[
"index"
]
=
np
.
array
(
sample_nodes
,
dtype
=
"int64"
)
return
subgraph
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录