mp_reader.py 6.1 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimized Multiprocessing Reader for PaddlePaddle
"""
import logging
log = logging.getLogger(__name__)
import multiprocessing
import copy
try:
    import ujson as json
except:
    log.info("ujson not install, fail back to use json instead")
    import json
import numpy as np
import time
import paddle.fluid as fluid
28
from multiprocessing import Queue
L
liweibin 已提交
29
import threading
Y
Yelrose 已提交
30
from collections import namedtuple
Y
Yelrose 已提交
31 32


Y
Yelrose 已提交
33 34
_np_serialized_data = namedtuple("_np_serialized_data", ["value", "shape", "dtype"])

Y
Yelrose 已提交
35 36 37 38 39 40 41 42 43
def serialize_data(data):
    """serialize_data"""
    if data is None:
        return None
    return numpy_serialize_data(data)  #, ensure_ascii=False)


def numpy_serialize_data(data):
    """serialize_data"""
Y
Yelrose 已提交
44 45 46 47 48 49 50 51 52 53 54
    ret_data = copy.deepcopy(data)
    if isinstance(ret_data, list):
        for key, value in enumerate(ret_data):
            if isinstance(ret_data[key], np.ndarray):
                ret_data[key] = _np_serialized_data(value=ret_data[key].tobytes(),
                                shape=list(ret_data[key].shape), dtype="%s" % ret_data[key].dtype)
    elif isinstance(ret_data, dict):
        for key in ret_data:
            if isinstance(ret_data[key], np.ndarray):
                ret_data[key] = _np_serialized_data(value=ret_data[key].tobytes(),
                                shape=list(ret_data[key].shape), dtype="%s" % ret_data[key].dtype)
Y
Yelrose 已提交
55 56 57 58 59 60 61
    return ret_data


def numpy_deserialize_data(data):
    """deserialize_data"""
    if data is None:
        return None
Y
Yelrose 已提交
62 63 64 65 66 67 68 69 70 71 72 73

    if isinstance(data, list):
        for key, value in enumerate(data):
            if isinstance(value, _np_serialized_data):
                data[key] = np.frombuffer(buffer=data[key].value,
                                dtype=data[key].dtype).reshape(data[key].shape)

    elif isinstance(data, dict):
        for key in data:
            if isinstance(data[key], _np_serialized_data):
                data[key] = np.frombuffer(buffer=data[key].value,
                                dtype=data[key].dtype).reshape(data[key].shape)
Y
Yelrose 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    return data


def deserialize_data(data):
    """deserialize_data"""
    return numpy_deserialize_data(data)


def multiprocess_reader(readers, use_pipe=True, queue_size=1000, pipe_size=10):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.
    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.
    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.
    An example:
    .. code-block:: python
        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
        """read_into_queue"""
        for sample in reader():
            if sample is None:
                raise ValueError("sample has None")
            queue.put(serialize_data(sample))
        queue.put(serialize_data(None))

    def queue_reader():
        """queue_reader"""
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = deserialize_data(queue.get())
            if sample is None:
                finish_num += 1
            else:
                yield sample

    def _read_into_pipe(reader, conn, max_pipe_size):
        """read_into_pipe"""
        for sample in reader():
            if sample is None:
                raise ValueError("sample has None!")
            conn.send(serialize_data(sample))
        conn.send(serialize_data(None))
        conn.close()

    def pipe_reader():
        """pipe_reader"""
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn, pipe_size))
            p.start()

        reader_num = len(readers)
        conn_to_remove = []
        finish_flag = np.zeros(len(conns), dtype="int32")
L
liweibin 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        start = time.time()

        def queue_worker(sub_conn, que):
            while True:
                buff = sub_conn.recv()
                sample = deserialize_data(buff)
                if sample is None:
                    que.put(None)
                    sub_conn.close()
                    break
                que.put(sample)

        thread_pool = []
        output_queue = Queue(maxsize=reader_num)
        for i in range(reader_num):
            t = threading.Thread(
                target=queue_worker, args=(conns[i], output_queue))
            t.daemon = True
            t.start()
            thread_pool.append(t)

        finish_num = 0
Y
Yelrose 已提交
172
        while finish_num < reader_num:
L
liweibin 已提交
173 174 175 176 177 178 179 180
            sample = output_queue.get()
            if sample is None:
                finish_num += 1
            else:
                yield sample

        for thread in thread_pool:
            thread.join()
Y
Yelrose 已提交
181 182 183 184 185

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader