mp_reader.py 5.3 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimized Multiprocessing Reader for PaddlePaddle
"""
import logging
log = logging.getLogger(__name__)
import multiprocessing
import copy
try:
    import ujson as json
except:
    log.info("ujson not install, fail back to use json instead")
    import json
import numpy as np
import time
import paddle.fluid as fluid
L
liweibin 已提交
28 29
from queue import Queue
import threading
Y
Yelrose 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


def serialize_data(data):
    """serialize_data"""
    if data is None:
        return None
    return numpy_serialize_data(data)  #, ensure_ascii=False)


def numpy_serialize_data(data):
    """serialize_data"""
    ret_data = {}
    for key in data:
        if isinstance(data[key], np.ndarray):
            ret_data[key] = (data[key].tobytes(), list(data[key].shape),
                             "%s" % data[key].dtype)
        else:
            ret_data[key] = data[key]
    return ret_data


def numpy_deserialize_data(data):
    """deserialize_data"""
    if data is None:
        return None
    for key in data:
        if isinstance(data[key], tuple):
            value = np.frombuffer(
                data[key][0], dtype=data[key][2]).reshape(data[key][1])
            data[key] = value
    return data


def deserialize_data(data):
    """deserialize_data"""
    return numpy_deserialize_data(data)


def multiprocess_reader(readers, use_pipe=True, queue_size=1000, pipe_size=10):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.
    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.
    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.
    An example:
    .. code-block:: python
        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
        """read_into_queue"""
        for sample in reader():
            if sample is None:
                raise ValueError("sample has None")
            queue.put(serialize_data(sample))
        queue.put(serialize_data(None))

    def queue_reader():
        """queue_reader"""
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = deserialize_data(queue.get())
            if sample is None:
                finish_num += 1
            else:
                yield sample

    def _read_into_pipe(reader, conn, max_pipe_size):
        """read_into_pipe"""
        for sample in reader():
            if sample is None:
                raise ValueError("sample has None!")
            conn.send(serialize_data(sample))
        conn.send(serialize_data(None))
        conn.close()

    def pipe_reader():
        """pipe_reader"""
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn, pipe_size))
            p.start()

        reader_num = len(readers)
        conn_to_remove = []
        finish_flag = np.zeros(len(conns), dtype="int32")
L
liweibin 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        start = time.time()

        def queue_worker(sub_conn, que):
            while True:
                buff = sub_conn.recv()
                sample = deserialize_data(buff)
                if sample is None:
                    que.put(None)
                    sub_conn.close()
                    break
                que.put(sample)

        thread_pool = []
        output_queue = Queue(maxsize=reader_num)
        for i in range(reader_num):
            t = threading.Thread(
                target=queue_worker, args=(conns[i], output_queue))
            t.daemon = True
            t.start()
            thread_pool.append(t)

        finish_num = 0
Y
Yelrose 已提交
158
        while finish_num < reader_num:
L
liweibin 已提交
159 160 161 162 163 164 165 166
            sample = output_queue.get()
            if sample is None:
                finish_num += 1
            else:
                yield sample

        for thread in thread_pool:
            thread.join()
Y
Yelrose 已提交
167 168 169 170 171

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader