sample.py 16.7 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
    This package implement graph sampling algorithm.
"""
import time
import copy

import numpy as np
import pgl
from pgl.utils.logger import log
from pgl import graph_kernel

L
liweibin 已提交
25 26
__all__ = [
    'graphsage_sample', 'node2vec_sample', 'deepwalk_sample',
Z
Zhong Hui 已提交
27
    'metapath_randomwalk', 'pinsage_sample', 'graph_saint_random_walk_sample'
L
liweibin 已提交
28
]
Y
Yelrose 已提交
29 30


L
liweibin 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def traverse(item):
    """traverse the list or numpy"""
    if isinstance(item, list) or isinstance(item, np.ndarray):
        for i in iter(item):
            for j in traverse(i):
                yield j
    else:
        yield item


def flat_node_and_edge(nodes, eids, weights=None):
    """flatten the sub-lists to one list"""
    nodes = list(set(traverse(nodes)))
    eids = list(traverse(eids))
    if weights is not None:
        weights = list(traverse(weights))
    return nodes, eids, weights


Y
Yelrose 已提交
50 51 52 53 54 55 56 57
def edge_hash(src, dst):
    """edge_hash
    """
    return src * 100000007 + dst


def graphsage_sample(graph, nodes, samples, ignore_edges=[]):
    """Implement of graphsage sample.
Z
Zhong Hui 已提交
58

W
weiyue.su 已提交
59
    Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf.
Y
Yelrose 已提交
60 61 62 63 64 65

    Args:
        graph: A pgl graph instance
        nodes: Sample starting from nodes
        samples: A list, number of neighbors in each layer
        ignore_edges: list of edge(src, dst) will be ignored.
Z
Zhong Hui 已提交
66

Y
Yelrose 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    Return:
        A list of subgraphs
    """
    start = time.time()
    num_layers = len(samples)
    start_nodes = nodes
    nodes = list(start_nodes)
    eids, edges = [], []
    nodes_set = set(nodes)
    layer_nodes, layer_eids, layer_edges = [], [], []
    ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges])

    for layer_idx in reversed(range(num_layers)):
        if len(start_nodes) == 0:
            layer_nodes = [nodes] + layer_nodes
            layer_eids = [eids] + layer_eids
            layer_edges = [edges] + layer_edges
            continue
        batch_pred_nodes, batch_pred_eids = graph.sample_predecessor(
            start_nodes, samples[layer_idx], return_eids=True)
        start = time.time()
        last_nodes_set = nodes_set

        nodes, eids = copy.copy(nodes), copy.copy(eids)
        edges = copy.copy(edges)
        nodes_set, eids_set = set(nodes), set(eids)
        for srcs, dst, pred_eids in zip(batch_pred_nodes, start_nodes,
                                        batch_pred_eids):
            for src, eid in zip(srcs, pred_eids):
                if edge_hash(src, dst) in ignore_edge_set:
                    continue
                if eid not in eids_set:
                    eids.append(eid)
                    edges.append([src, dst])
                    eids_set.add(eid)
                if src not in nodes_set:
                    nodes.append(src)
                    nodes_set.add(src)
        layer_edges = [edges] + layer_edges
        start_nodes = list(nodes_set - last_nodes_set)
        layer_nodes = [nodes] + layer_nodes
        layer_eids = [eids] + layer_eids
        start = time.time()
        # Find new nodes

    feed_dict = {}

    subgraphs = []
    for i in range(num_layers):
        subgraphs.append(
            graph.subgraph(
                nodes=layer_nodes[0], eid=layer_eids[i], edges=layer_edges[i]))
        # only for this task
        subgraphs[i].node_feat["index"] = np.array(
            layer_nodes[0], dtype="int64")

    return subgraphs


def alias_sample(size, alias, events):
    """Implement of alias sample.
    Args:
        size: Output shape.
        alias: The alias table build by `alias_sample_build_table`.
        events: The events table build by `alias_sample_build_table`.
Z
Zhong Hui 已提交
132

Y
Yelrose 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    Return:
        samples: The generated random samples.
    """
    rand_num = np.random.uniform(0.0, len(alias), size)
    idx = rand_num.astype("int64")
    uni = rand_num - idx
    flags = (uni >= alias[idx])
    idx[flags] = events[idx][flags]
    return idx


def graph_alias_sample_table(graph, edge_weight_name):
    """Build alias sample table for weighted deepwalk.
    Args:
        graph: The input graph
        edge_weight_name: The name of edge weight in edge_feat.

    Return:
        Alias sample tables for each nodes.
    """
    edge_weight = graph.edge_feat[edge_weight_name]
    _, eids_array = graph.successor(return_eids=True)
    alias_array, events_array = [], []
    for eids in eids_array:
        probs = edge_weight[eids]
        probs /= np.sum(probs)
        alias, events = graph_kernel.alias_sample_build_table(probs)
        alias_array.append(alias), events_array.append(events)
    alias_array, events_array = np.array(alias_array), np.array(events_array)
    return alias_array, events_array


def deepwalk_sample(graph, nodes, max_depth, alias_name=None,
                    events_name=None):
    """Implement of random walk.

    This function get random walks path for given nodes and depth.

    Args:
        nodes: Walk starting from nodes
        max_depth: Max walking depth

    Return:
        A list of walks.
    """
    walk = []
    # init
    for node in nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(nodes))
    cur_nodes = np.array(nodes)
    for l in range(max_depth):
        # select the walks not end
        cur_succs = graph.successor(cur_nodes)
        mask = [len(succ) > 0 for succ in cur_succs]

        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            cur_succs = cur_succs[mask]
        else:
            # stop when all nodes have no successor
            break

        if alias_name is not None and events_name is not None:
            sample_index = [
                alias_sample([1], graph.node_feat[alias_name][node],
                             graph.node_feat[events_name][node])[0]
                for node in cur_nodes
            ]
        else:
            outdegree = [len(cur_succ) for cur_succ in cur_succs]
            sample_index = np.floor(
                np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64")

        nxt_cur_nodes = []
        for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids):
            walk[walk_id].append(s[ind])
            nxt_cur_nodes.append(s[ind])
        cur_nodes = np.array(nxt_cur_nodes)
    return walk


def node2vec_sample(graph, nodes, max_depth, p=1.0, q=1.0):
    """Implement of node2vec random walk.

    Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

    Args:
        graph: A pgl graph instance
        nodes: Walk starting from nodes
        max_depth: Max walking depth
        p: Return parameter
        q: In-out parameter

    Return:
        A list of walks.
    """
    if p == 1.0 and q == 1.0:
        return deepwalk_sample(graph, nodes, max_depth)

    walk = []
    # init
    for node in nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(nodes))
    cur_nodes = np.array(nodes)
    prev_nodes = np.array([-1] * len(nodes), dtype="int64")
    prev_succs = np.array([[]] * len(nodes), dtype="int64")
    for l in range(max_depth):
        # select the walks not end
        cur_succs = graph.successor(cur_nodes)

        mask = [len(succ) > 0 for succ in cur_succs]
        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            prev_nodes = prev_nodes[mask]
            prev_succs = prev_succs[mask]
            cur_succs = cur_succs[mask]
        else:
            # stop when all nodes have no successor
            break
        num_nodes = cur_nodes.shape[0]
        nxt_nodes = np.zeros(num_nodes, dtype="int64")

        for idx, (
                succ, prev_succ, walk_id, prev_node
        ) in enumerate(zip(cur_succs, prev_succs, cur_walk_ids, prev_nodes)):

            sampled_succ = graph_kernel.node2vec_sample(succ, prev_succ,
                                                        prev_node, p, q)
            walk[walk_id].append(sampled_succ)
            nxt_nodes[idx] = sampled_succ

        prev_nodes, prev_succs = cur_nodes, cur_succs
        cur_nodes = nxt_nodes
    return walk
L
liweibin 已提交
273 274


275 276 277 278 279 280
def metapath_randomwalk(graph,
                        start_nodes,
                        metapath,
                        walk_length,
                        alias_name=None,
                        events_name=None):
L
liweibin 已提交
281 282 283 284
    """Implementation of metapath random walk in heterogeneous graph.

    Args:
        graph: instance of pgl heterogeneous graph
285
        start_nodes: start nodes to generate walk
Z
Zhong Hui 已提交
286
        metapath: meta path for sample nodes.
287
            e.g: "c2p-p2a-a2p-p2c"
L
liweibin 已提交
288 289 290
        walk_length: the walk length

    Return:
Z
Zhong Hui 已提交
291 292
        a list of metapath walks.

L
liweibin 已提交
293
    """
294 295 296

    edge_types = metapath.split('-')

L
liweibin 已提交
297
    walk = []
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    for node in start_nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(start_nodes))
    cur_nodes = np.array(start_nodes)
    mp_len = len(edge_types)
    for i in range(0, walk_length - 1):
        g = graph[edge_types[i % mp_len]]

        cur_succs = g.successor(cur_nodes)
        mask = [len(succ) > 0 for succ in cur_succs]

        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            cur_succs = cur_succs[mask]
L
liweibin 已提交
314
        else:
315
            # stop when all nodes have no successor
L
liweibin 已提交
316 317
            break

318 319 320 321 322 323
        if alias_name is not None and events_name is not None:
            sample_index = [
                alias_sample([1], g.node_feat[alias_name][node],
                             g.node_feat[events_name][node])[0]
                for node in cur_nodes
            ]
L
liweibin 已提交
324
        else:
325 326 327 328 329 330 331 332 333
            outdegree = [len(cur_succ) for cur_succ in cur_succs]
            sample_index = np.floor(
                np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64")

        nxt_cur_nodes = []
        for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids):
            walk[walk_id].append(s[ind])
            nxt_cur_nodes.append(s[ind])
        cur_nodes = np.array(nxt_cur_nodes)
L
liweibin 已提交
334 335

    return walk
L
liweibin 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392


def random_walk_with_start_prob(graph, nodes, max_depth, proba=0.5):
    """Implement of random walk with the probability of returning the origin node.

    This function get random walks path for given nodes and depth.

    Args:
        nodes: Walk starting from nodes
        max_depth: Max walking depth
        proba: the proba to return the origin node

    Return:
        A list of walks.
    """
    walk = []
    # init
    for node in nodes:
        walk.append([node])

    walk_ids = np.arange(0, len(nodes))
    cur_nodes = np.array(nodes)
    nodes = np.array(nodes)
    for l in range(max_depth):
        # select the walks not end
        if l >= 1:
            return_proba = np.random.rand(cur_nodes.shape[0])
            proba_mask = (return_proba < proba)
            cur_nodes[proba_mask] = nodes[proba_mask]
        outdegree = graph.outdegree(cur_nodes)
        mask = (outdegree != 0)
        if np.any(mask):
            cur_walk_ids = walk_ids[mask]
            outdegree = outdegree[mask]
        else:
            # stop when all nodes have no successor, wait start next loop to get precesssor
            continue
        succ = graph.successor(cur_nodes[mask])
        sample_index = np.floor(
            np.random.rand(outdegree.shape[0]) * outdegree).astype("int64")

        nxt_cur_nodes = cur_nodes
        for s, ind, walk_id in zip(succ, sample_index, cur_walk_ids):
            walk[walk_id].append(s[ind])
            nxt_cur_nodes[walk_id] = s[ind]
        cur_nodes = np.array(nxt_cur_nodes)
    return walk


def pinsage_sample(graph,
                   nodes,
                   samples,
                   top_k=10,
                   proba=0.5,
                   norm_bais=1.0,
                   ignore_edges=set()):
    """Implement of graphsage sample.
Z
Zhong Hui 已提交
393

L
liweibin 已提交
394 395 396 397 398 399
    Reference paper: .

    Args:
        graph: A pgl graph instance
        nodes: Sample starting from nodes
        samples: A list, number of neighbors in each layer
Z
Zhong Hui 已提交
400 401
        top_k: select the top_k visit count nodes to construct the edges
        proba: the probability to return the origin node
L
liweibin 已提交
402 403
        norm_bais: the normlization for the visit count
        ignore_edges: list of edge(src, dst) will be ignored.
Z
Zhong Hui 已提交
404

L
liweibin 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    Return:
        A list of subgraphs
    """
    start = time.time()
    num_layers = len(samples)
    start_nodes = nodes
    edges, weights = [], []
    layer_nodes, layer_edges, layer_weights = [], [], []
    ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges])

    for layer_idx in reversed(range(num_layers)):
        if len(start_nodes) == 0:
            layer_nodes = [nodes] + layer_nodes
            layer_edges = [edges] + layer_edges
            layer_edges_weight = [weights] + layer_weights
            continue
        walks = random_walk_with_start_prob(
            graph, start_nodes, samples[layer_idx], proba=proba)
        walks = [walk[1:] for walk in walks]
        pred_edges = []
        pred_weights = []
        pred_nodes = []
        for node, walk in zip(start_nodes, walks):
            walk_nodes = []
            walk_weights = []
            count_sum = 0

            for random_walk_node in walk:
                if len(ignore_edge_set) > 0 and random_walk_node != node and \
                    edge_hash(random_walk_node, node) in ignore_edge_set:
                    continue
                walk_nodes.append(random_walk_node)
            unique, counts = np.unique(walk_nodes, return_counts=True)
            frequencies = np.asarray((unique, counts)).T
            frequencies = frequencies[np.argsort(frequencies[:, 1])]
            frequencies = frequencies[-1 * top_k:, :]
            for random_walk_node, random_count in zip(
                    frequencies[:, 0].tolist(), frequencies[:, 1].tolist()):
                pred_nodes.append(random_walk_node)
                pred_edges.append((random_walk_node, node))
                walk_weights.append(random_count)
                count_sum += random_count
            count_sum += len(walk_weights) * norm_bais
            walk_weights = (np.array(walk_weights) + norm_bais) / (count_sum)
            pred_weights.extend(walk_weights.tolist())
        last_node_set = set(nodes)
        nodes, edges, weights = flat_node_and_edge([nodes, pred_nodes], \
            [edges, pred_edges], [weights, pred_weights])

        layer_edges = [edges] + layer_edges
        layer_weights = [weights] + layer_weights
        layer_nodes = [nodes] + layer_nodes

        start_nodes = list(set(nodes) - last_node_set)
        start = time.time()

    feed_dict = {}

    subgraphs = []

    for i in range(num_layers):
        edge_feat_dict = {
            "weight": np.array(
                layer_weights[i], dtype='float32')
        }
        subgraphs.append(
            graph.subgraph(
                nodes=layer_nodes[0],
                edges=layer_edges[i],
                edge_feats=edge_feat_dict))
        subgraphs[i].node_feat["index"] = np.array(
            layer_nodes[0], dtype="int64")

    return subgraphs
Z
Zhong Hui 已提交
479 480


Z
Zhong Hui 已提交
481 482 483 484 485 486 487
def extract_edges_from_nodes(graph, sample_nodes):
    eids = graph_kernel.extract_edges_from_nodes(
        graph._adj_dst_index._indptr, graph._adj_dst_index._sorted_v,
        sample_nodes)
    return eids


Z
Zhong Hui 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
def graph_saint_random_walk_sample(graph,
                                   nodes,
                                   max_depth,
                                   alias_name=None,
                                   events_name=None):
    """Implement of graph saint random walk sample.

    First, this function will get random walks path for given nodes and depth.
    Then, it will create subgraph from all sampled nodes.

    Reference Paper: https://arxiv.org/abs/1907.04931

    Args:
        graph: A pgl graph instance
        nodes: Walk starting from nodes
        max_depth: Max walking depth

    Return:
        a subgraph of sampled nodes.
    """
    graph.indegree()
    walks = deepwalk_sample(graph, nodes, max_depth, alias_name, events_name)
    sample_nodes = []
    for walk in walks:
        sample_nodes.extend(walk)
    sample_nodes = np.unique(sample_nodes)
Z
Zhong Hui 已提交
514
    eids = extract_edges_from_nodes(graph, sample_nodes)
Z
Zhong Hui 已提交
515 516 517 518
    subgraph = graph.subgraph(
        nodes=sample_nodes, eid=eids, with_node_feat=True, with_edge_feat=True)
    subgraph.node_feat["index"] = np.array(sample_nodes, dtype="int64")
    return subgraph