sgc_examples.md 1.1 KB
Newer Older
L
liweibin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# PGL Examples for SGC 

[Simplifying Graph Convolutional Networks \(SGC\)](https://arxiv.org/pdf/1902.07153.pdf) is a powerful neural network designed for machine learning on graphs. Based on PGL, we reproduce SGC algorithms and reach the same level of indicators as the paper in citation network benchmarks.

### Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the [paper](https://arxiv.org/abs/1609.02907).

### Dependencies

- paddlepaddle>=1.6
- pgl>=1.0.0

### Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

| Dataset | Accuracy | Speed with paddle 1.5 <br> (epoch time)|
| --- | --- | ---|
| Cora | 0.818 (paper: 0.810) | 0.0015s | 
| Pubmed | 0.788 (paper: 0.789) | 0.0015s |
| Citeseer | 0.719 (paper: 0.719) | 0.0015s | 


### How to run

For examples, use gpu to train SGC on cora dataset.
```
python sgc.py --dataset cora --use_cuda
```

### Hyperparameters

- dataset: The citation dataset "cora", "citeseer", "pubmed".
- use_cuda: Use gpu if assign use_cuda. 

### View the Code

See the code [here](sgc_examples_code.html)