# PGL Examples for SGC [Simplifying Graph Convolutional Networks \(SGC\)](https://arxiv.org/pdf/1902.07153.pdf) is a powerful neural network designed for machine learning on graphs. Based on PGL, we reproduce SGC algorithms and reach the same level of indicators as the paper in citation network benchmarks. ### Datasets The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the [paper](https://arxiv.org/abs/1609.02907). ### Dependencies - paddlepaddle>=1.6 - pgl>=1.0.0 ### Performance We train our models for 200 epochs and report the accuracy on the test dataset. | Dataset | Accuracy | Speed with paddle 1.5
(epoch time)| | --- | --- | ---| | Cora | 0.818 (paper: 0.810) | 0.0015s | | Pubmed | 0.788 (paper: 0.789) | 0.0015s | | Citeseer | 0.719 (paper: 0.719) | 0.0015s | ### How to run For examples, use gpu to train SGC on cora dataset. ``` python sgc.py --dataset cora --use_cuda ``` ### Hyperparameters - dataset: The citation dataset "cora", "citeseer", "pubmed". - use_cuda: Use gpu if assign use_cuda. ### View the Code See the code [here](sgc_examples_code.html)