paddle_helper.py 7.4 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
paddle_helper package contain some simple function to help building
paddle models.
"""
import warnings
import numpy as np

import paddle
from paddle.fluid import core
import paddle.fluid as fluid
import paddle.fluid.layer_helper as layer_helper
from pgl.utils.logger import log


def gather(input, index):
    """Gather input from given index.

    Slicing input data with given index. This function rewrite paddle.fluid.layers.gather
    to fix issue: https://github.com/PaddlePaddle/Paddle/issues/17509 when paddlepaddle's
    version is less than 1.5.

    Args:
        input: Input tensor to be sliced

        index: Slice index

    Return:
        A tensor that are sliced from given input data.
    """
    try:
        # PaddlePaddle 1.5
        output = fluid.layers.gather(input, index, overwrite=False)
        return output
    except TypeError as e:
        warnings.warn("Your paddle version is less than 1.5"
                      " gather may be slower.")

        if index.dtype == core.VarDesc.VarType.INT32:
            index = fluid.layers.cast(index, "int64")
            if index.shape[-1] != 1:
                index = fluid.layers.reshape(index, shape=[-1, 1])
            index.stop_gradient = True

        helper = layer_helper.LayerHelper("gather", **locals())  #**locals())
        dtype = input.dtype
        tmp = helper.create_variable_for_type_inference(dtype)
        padding_idx = -1
        helper.append_op(
            type='lookup_table',
            inputs={'Ids': index,
                    'W': input},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': False,
                'is_distributed': False,
                'remote_prefetch': False,
                'padding_idx': padding_idx
            })
        return tmp


def constant(name, value, dtype, hide_batch_size=True):
    """Create constant variable with given data.

    This function helps to create constants variable with
    given numpy.ndarray data.

    Args:
        name: variable name

        value: numpy.ndarray the value of constant

        dtype: the type of constant

        hide_batch_size: If set the first dimenstion as unknown, the explicit
                         batch size may cause some error in paddle. For example,
                         when the value has a shape of (batch_size, dim1, dim2),
                         it will return a variable with shape (-1, dim1, dim2).

    Return:
        A tuple contain the constant variable and the constant
        variable initialize function.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            constant_var, constant_var_init = constant(name="constant",
                              value=np.array([5.0],
                              dtype="float32"))
            exe.run(fluid.default_startup_program())
            # Run After default startup
            constant_var_init(place)

    """
    if not isinstance(value, np.ndarray):
        raise TypeError("value should be Numpy array.")

    value = value.astype(dtype)
    data = fluid.layers.create_global_var(
        shape=value.shape,
        value=0,
        dtype=value.dtype,
        name=name,
        persistable=True)
    data.stop_gradient = True

    if hide_batch_size:
        shape = list(value.shape)
        shape[0] = -1
        data.desc.set_shape(shape)

    def initializer(place):
        if isinstance(place, fluid.CUDAPlace):
            pass
        elif isinstance(place, fluid.CUDAPinnedPlace):
            pass
        elif isinstance(place, fluid.CPUPlace):
            pass
        else:
            raise TypeError(
                "The input of initializer is not in"
                " [fluid.CUDAPlace, fluid.CPUPlace, fluid.CUDAPinnedPlace]")
        var = fluid.global_scope().var(data.name).get_tensor()
        var.set(value, place)

    return data, initializer


def lod_constant(name, value, lod, dtype):
    """Create constant lod variable with given data,

    This function helps to create constants lod variable with given numpy.ndarray data
    and lod information.

    Args:
        name: variable name

        value: numpy.ndarray the value of constant

        dtype: the type of constant

        lod: lod infos of given value.

    Return:
        A tuple contain the constant variable and the constant
        variable initialize function.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            constant_var, constant_var_init = lod_constant(name="constant",
                              value=np.array([[5.0], [1.0], [2.0]],
                              lod=[2, 1],
                              dtype="float32"))
            exe.run(fluid.default_startup_program())
            # Run After default startup
            constant_var_init(place)
    """
    data, data_initializer = constant(
        name=name, value=value, dtype=dtype, hide_batch_size=True)

    _lod = [0]
    for l in lod:
        _lod.append(_lod[-1] + l)
    output = fluid.layers.lod_reset(data, target_lod=_lod)
    return output, data_initializer


F
fengshikun01 已提交
188
def sequence_softmax(x, beta=None):
Y
yelrose 已提交
189 190 191 192 193 194 195 196
    """Compute sequence softmax over paddle LodTensor

    This function compute softmax normalization along with the length of sequence.
    This function is an extention of :code:`fluid.layers.sequence_softmax` which can only
    deal with LodTensor whose last dimension is 1.

    Args:
        x: The input variable which is a LodTensor.
F
fengshikun01 已提交
197
        beta: Inverse Temperature
Y
yelrose 已提交
198 199 200 201

    Return:
        Output of sequence_softmax
    """
F
fengshikun01 已提交
202 203 204 205

    if beta is not None:
        x =  x * beta
    
Y
yelrose 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    x_max = fluid.layers.sequence_pool(x, "max")
    x_max = fluid.layers.sequence_expand_as(x_max, x)
    x = x - x_max
    exp_x = fluid.layers.exp(x)
    sum_exp_x = fluid.layers.sequence_pool(exp_x, "sum")
    sum_exp_x = fluid.layers.sequence_expand_as(sum_exp_x, exp_x)
    return exp_x / sum_exp_x


def scatter_add(input, index, updates):
    """Scatter add updates to input by given index.

    Adds sparse updates to input variables.

    Args:
        input: Input tensor to be updated

        index: Slice index

        updates: Must have same type as input.

    Return:
        Same type and shape as input.
    """

L
update  
liweibin 已提交
231
    output = fluid.layers.scatter(input, index, updates, overwrite=False)
Y
Yelrose 已提交
232 233
    return output

L
update  
liweibin 已提交
234

Y
Yelrose 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def scatter_max(input, index, updates):
    """Scatter max updates to input by given index.

    Adds sparse updates to input variables.

    Args:
        input: Input tensor to be updated

        index: Slice index

        updates: Must have same type as input.

    Return:
        Same type and shape as input.
    """

    output = fluid.layers.scatter(input, index, updates, mode='max')
Y
yelrose 已提交
252
    return output