提交 e8cc247f 编写于 作者: L liweibin

update

上级 98e82403
docs/source/_static/logo.png

49.1 KB | W: | H:

docs/source/_static/logo.png

50.4 KB | W: | H:

docs/source/_static/logo.png
docs/source/_static/logo.png
docs/source/_static/logo.png
docs/source/_static/logo.png
  • 2-up
  • Swipe
  • Onion skin
......@@ -73,13 +73,12 @@ lanaguage = "zh_cn"
html_theme = "sphinx_rtd_theme"
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
html_show_sourcelink = False
#html_logo = 'pgl_logo.png'
html_logo = '_static/logo.png'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
'''
html_theme_options = {
'canonical_url': '',
'analytics_id': 'UA-XXXXXXX-1', # Provided by Google in your dashboard
......@@ -96,4 +95,3 @@ html_theme_options = {
'includehidden': True,
'titles_only': False
}
'''
# Paddle Graph Learning (PGL)
<div />
<div align=left><img src="_static/logo.png" width="300"></div>
<div />
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle).
......
......@@ -20,7 +20,7 @@ Some important hyper parameters in config.yaml:
- **use_cuda**: use GPU to train model
- **data_path**: the directory of dataset that you want to load
- **lr**: learning rate
- **neg_num**: number of negatie samples.
- **neg_num**: number of negative samples.
- **num_walks**: number of walks started from each node
- **walk_length**: walk length
- **metapath**: meta path scheme
......
......@@ -16,6 +16,7 @@
from pgl.layers import conv
from pgl.layers.conv import *
from pgl.layers import set2set
from pgl.layers.set2set import *
__all__ = []
......
......@@ -23,6 +23,8 @@ import paddle.fluid.layers as L
import pgl
__all__ = ['Set2Set']
class Set2Set(object):
"""Implementation of set2set pooling operator.
......
......@@ -223,9 +223,10 @@ def scatter_add(input, index, updates):
Same type and shape as input.
"""
output = fluid.layers.scatter(input, index, updates, mode='add')
output = fluid.layers.scatter(input, index, updates, overwrite=False)
return output
def scatter_max(input, index, updates):
"""Scatter max updates to input by given index.
......@@ -244,4 +245,3 @@ def scatter_max(input, index, updates):
output = fluid.layers.scatter(input, index, updates, mode='max')
return output
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册