main.py 5.6 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# SSL

import torch
import os
import re
import time
from random import random
from functools import reduce, partial
import numpy as np
import multiprocessing

from ogb.graphproppred import Evaluator
import paddle
import paddle.fluid as F
import paddle.fluid.layers as L
import pgl
from pgl.utils import paddle_helper
from pgl.utils.logger import log

from utils.args import print_arguments, check_cuda, prepare_logger
from utils.init import init_checkpoint, init_pretraining_params
from utils.config import Config
from optimization import optimization
from monitor.train_monitor import train_and_evaluate
from args import parser

import model as Model
from data.base_dataset import Subset, Dataset
from data.dataloader import GraphDataloader


def main(args):
    log.info('loading data')
    dataset = Dataset(args)
    args.num_class = dataset.num_tasks
    args.eval_metrics = dataset.eval_metrics
    args.task_type = dataset.task_type
    splitted_index = dataset.get_idx_split()
    train_dataset = Subset(dataset, splitted_index['train'])
    valid_dataset = Subset(dataset, splitted_index['valid'])
    test_dataset = Subset(dataset, splitted_index['test'])

    log.info("preprocess finish")
    log.info("Train Examples: %s" % len(train_dataset))
    log.info("Val Examples: %s" % len(valid_dataset))
    log.info("Test Examples: %s" % len(test_dataset))

    train_prog = F.Program()
    startup_prog = F.Program()

    if args.use_cuda:
        dev_list = F.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
    else:
        place = F.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
        #  dev_count = args.cpu_num

    log.info("building model")
    with F.program_guard(train_prog, startup_prog):
        with F.unique_name.guard():
            graph_model = getattr(Model, args.model_type)(args, dataset)
            train_ds = GraphDataloader(
                train_dataset,
                graph_model.graph_wrapper,
                batch_size=args.batch_size)

            num_train_examples = len(train_dataset)
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count
            warmup_steps = int(max_train_steps * args.warmup_proportion)

            scheduled_lr, loss_scaling = optimization(
                loss=graph_model.loss,
                warmup_steps=warmup_steps,
                num_train_steps=max_train_steps,
                learning_rate=args.learning_rate,
                train_program=train_prog,
                startup_prog=startup_prog,
                weight_decay=args.weight_decay,
                scheduler=args.lr_scheduler,
                use_fp16=False,
                use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                init_loss_scaling=args.init_loss_scaling,
                incr_every_n_steps=args.incr_every_n_steps,
                decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                incr_ratio=args.incr_ratio,
                decr_ratio=args.decr_ratio)

    test_prog = F.Program()
    with F.program_guard(test_prog, startup_prog):
        with F.unique_name.guard():
            _graph_model = getattr(Model, args.model_type)(args, dataset)

    test_prog = test_prog.clone(for_test=True)

    valid_ds = GraphDataloader(
        valid_dataset,
        graph_model.graph_wrapper,
        batch_size=args.batch_size,
        shuffle=False)
    test_ds = GraphDataloader(
        test_dataset,
        graph_model.graph_wrapper,
        batch_size=args.batch_size,
        shuffle=False)

    exe = F.Executor(place)
    exe.run(startup_prog)
    for init in graph_model.init_vars:
        init(place)
    for init in _graph_model.init_vars:
        init(place)

    if args.init_pretraining_params is not None:
        init_pretraining_params(
            exe, args.init_pretraining_params, main_program=startup_prog)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    if dev_count > 1:

        exec_strategy = F.ExecutionStrategy()
        exec_strategy.num_threads = dev_count

        train_exe = F.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_model.loss.name,
            exec_strategy=exec_strategy,
            main_program=train_prog,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)

        test_exe = exe
    else:
        train_exe, test_exe = exe, exe

    evaluator = Evaluator(args.dataset_name)

    train_and_evaluate(
        exe=exe,
        train_exe=train_exe,
        valid_exe=test_exe,
        train_ds=train_ds,
        valid_ds=valid_ds,
        test_ds=test_ds,
        train_prog=train_prog,
        valid_prog=test_prog,
        args=args,
        dev_count=dev_count,
        evaluator=evaluator,
        model=graph_model)


if __name__ == "__main__":
    args = parser.parse_args()
    if args.config is not None:
W
Webbley 已提交
174
        config = Config(args.config, isCreate=True, isSave=True)
W
Webbley 已提交
175

W
Webbley 已提交
176
    config['use_cuda'] = args.use_cuda
W
Webbley 已提交
177

W
Webbley 已提交
178 179 180
    log.info(config)

    main(config)