# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ssl ssl._create_default_https_context = ssl._create_unverified_context # SSL import torch import os import re import time from random import random from functools import reduce, partial import numpy as np import multiprocessing from ogb.graphproppred import Evaluator import paddle import paddle.fluid as F import paddle.fluid.layers as L import pgl from pgl.utils import paddle_helper from pgl.utils.logger import log from utils.args import print_arguments, check_cuda, prepare_logger from utils.init import init_checkpoint, init_pretraining_params from utils.config import Config from optimization import optimization from monitor.train_monitor import train_and_evaluate from args import parser import model as Model from data.base_dataset import Subset, Dataset from data.dataloader import GraphDataloader def main(args): log.info('loading data') dataset = Dataset(args) args.num_class = dataset.num_tasks args.eval_metrics = dataset.eval_metrics args.task_type = dataset.task_type splitted_index = dataset.get_idx_split() train_dataset = Subset(dataset, splitted_index['train']) valid_dataset = Subset(dataset, splitted_index['valid']) test_dataset = Subset(dataset, splitted_index['test']) log.info("preprocess finish") log.info("Train Examples: %s" % len(train_dataset)) log.info("Val Examples: %s" % len(valid_dataset)) log.info("Test Examples: %s" % len(test_dataset)) train_prog = F.Program() startup_prog = F.Program() if args.use_cuda: dev_list = F.cuda_places() place = dev_list[0] dev_count = len(dev_list) else: place = F.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) # dev_count = args.cpu_num log.info("building model") with F.program_guard(train_prog, startup_prog): with F.unique_name.guard(): graph_model = getattr(Model, args.model_type)(args, dataset) train_ds = GraphDataloader( train_dataset, graph_model.graph_wrapper, batch_size=args.batch_size) num_train_examples = len(train_dataset) max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) scheduled_lr, loss_scaling = optimization( loss=graph_model.loss, warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_prog, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=False, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, incr_every_n_steps=args.incr_every_n_steps, decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, incr_ratio=args.incr_ratio, decr_ratio=args.decr_ratio) test_prog = F.Program() with F.program_guard(test_prog, startup_prog): with F.unique_name.guard(): _graph_model = getattr(Model, args.model_type)(args, dataset) test_prog = test_prog.clone(for_test=True) valid_ds = GraphDataloader( valid_dataset, graph_model.graph_wrapper, batch_size=args.batch_size, shuffle=False) test_ds = GraphDataloader( test_dataset, graph_model.graph_wrapper, batch_size=args.batch_size, shuffle=False) exe = F.Executor(place) exe.run(startup_prog) for init in graph_model.init_vars: init(place) for init in _graph_model.init_vars: init(place) if args.init_pretraining_params is not None: init_pretraining_params( exe, args.init_pretraining_params, main_program=startup_prog) nccl2_num_trainers = 1 nccl2_trainer_id = 0 if dev_count > 1: exec_strategy = F.ExecutionStrategy() exec_strategy.num_threads = dev_count train_exe = F.ParallelExecutor( use_cuda=args.use_cuda, loss_name=graph_model.loss.name, exec_strategy=exec_strategy, main_program=train_prog, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) test_exe = exe else: train_exe, test_exe = exe, exe evaluator = Evaluator(args.dataset_name) train_and_evaluate( exe=exe, train_exe=train_exe, valid_exe=test_exe, train_ds=train_ds, valid_ds=valid_ds, test_ds=test_ds, train_prog=train_prog, valid_prog=test_prog, args=args, dev_count=dev_count, evaluator=evaluator, model=graph_model) if __name__ == "__main__": args = parser.parse_args() if args.config is not None: config = Config(args.config, isCreate=True, isSave=True) config['use_cuda'] = args.use_cuda log.info(config) main(config)