提交 cdb50056 编写于 作者: H Hongsheng Zeng 提交者: Bo Zhou

NeurIPS2018-AI-for-Prosthetics-Challenge training code (#40)

* NeurIPS2018-AI-for-Prosthetics-Challenge training code

* remove model_zoo, provide download link

* remove model_zoo, provide download link

* add restore_from_one_head api, refine README, fix logger bug

* fix test bug

* fix rpm bug, refine ddpg train script

* fix rpm bug, refine Readme
上级 f8de849b
......@@ -61,13 +61,13 @@ three steps to build an agent
model = AtariModel(img_shape=(32, 32), action_dim=4)
algorithm = DQN(model)
agent = AtariAgent(aglrotihm)
agent = AtariAgent(algorithm)
```
# Install:
### Dependencies
- Python 2.7 or 3.5+.
- PaddlePaddle >=1.0 (We try to make our repository always compatible with newest version PaddlePaddle)
- PaddlePaddle >=1.2.1 (We try to make our repository always compatible with newest version PaddlePaddle)
```
......
......@@ -19,12 +19,10 @@ import time
from mujoco_agent import MujocoAgent
from mujoco_model import MujocoModel
from parl.algorithms import DDPG
from parl.utils import logger, action_mapping
from replay_memory import ReplayMemory
from parl.utils import logger, action_mapping, ReplayMemory
MAX_EPISODES = 5000
TEST_EVERY_EPISODES = 50
MAX_STEPS_EACH_EPISODE = 1000
TEST_EVERY_EPISODES = 20
ACTOR_LR = 1e-4
CRITIC_LR = 1e-3
GAMMA = 0.99
......@@ -39,7 +37,7 @@ ENV_SEED = 1
def run_train_episode(env, agent, rpm):
obs = env.reset()
total_reward = 0
for j in range(MAX_STEPS_EACH_EPISODE):
while True:
batch_obs = np.expand_dims(obs, axis=0)
action = agent.predict(batch_obs.astype('float32'))
action = np.squeeze(action)
......@@ -70,7 +68,7 @@ def run_train_episode(env, agent, rpm):
def run_evaluate_episode(env, agent):
obs = env.reset()
total_reward = 0
for j in range(MAX_STEPS_EACH_EPISODE):
while True:
batch_obs = np.expand_dims(obs, axis=0)
action = agent.predict(batch_obs.astype('float32'))
action = np.squeeze(action)
......@@ -112,7 +110,8 @@ def main():
logger.info('Episode: {} Reward: {}'.format(i, train_reward))
if (i + 1) % TEST_EVERY_EPISODES == 0:
evaluate_reward = run_evaluate_episode(env, agent)
logger.info('Evaluate Reward: {}'.format(evaluate_reward))
logger.info('Episode {}, Evaluate reward: {}'.format(
i, evaluate_reward))
if __name__ == '__main__':
......
......@@ -64,8 +64,9 @@ def run_train_episode(env, agent, rpm):
state = next_state
if isOver:
break
logger.info('[Train]total_reward: {}, mean_cost: {}'.format(
total_reward, np.mean(all_cost)))
if all_cost:
logger.info('[Train]total_reward: {}, mean_cost: {}'.format(
total_reward, np.mean(all_cost)))
return total_reward, step
......@@ -122,7 +123,7 @@ def main():
if total_step // args.test_every_steps == test_flag:
pbar.write("testing")
eval_rewards = []
for _ in tqdm(range(30), desc='eval agent'):
for _ in tqdm(range(3), desc='eval agent'):
eval_reward = run_evaluate_episode(test_env, agent)
eval_rewards.append(eval_reward)
test_flag += 1
......
## The Winning Solution for the NeurIPS 2018: AI for Prosthetics Challenge
# The Winning Solution for the NeurIPS 2018: AI for Prosthetics Challenge
This folder will contains the code used to train the winning models for the [NeurIPS 2018: AI for Prosthetics Challenge](https://www.crowdai.org/challenges/neurips-2018-ai-for-prosthetics-challenge) along with the resulting models. (Codes of training part is organizing, but the resulting models is available now.)
### Dependencies
This folder contains the code used to train the winning models for the [NeurIPS 2018: AI for Prosthetics Challenge](https://www.crowdai.org/challenges/neurips-2018-ai-for-prosthetics-challenge) along with the resulting models.
## Dependencies
- python3.6
- [paddlepaddle>=1.2.0](https://github.com/PaddlePaddle/Paddle)
- [paddlepaddle>=1.2.1](https://github.com/PaddlePaddle/Paddle)
- [osim-rl](https://github.com/stanfordnmbl/osim-rl)
- [grpcio==1.12.1](https://grpc.io/docs/quickstart/python.html)
- tqdm
- tensorflow (To use tensorboard)
## Result
### Start Testing best models
| Avg reward of all episodes | Avg reward of complete episodes | Falldown % | Evaluate episodes |
|----------------------------|---------------------------------|------------|-------------------|
| 9968.5404 | 9980.3952 | 0.0026 | 500 CPUs * 10 episodes |
## Start test our submit models
- How to Run
```bash
# cd current directory
# install best models file (saved_model.tar.gz)
# cd final_submit/
# download submit models file (saved_model.tar.gz)
tar zxvf saved_model.tar.gz
python test.py
```
> You can install models file from [Baidu Pan](https://pan.baidu.com/s/1NN1auY2eDblGzUiqR8Bfqw) or [Google Drive](https://drive.google.com/open?id=1DQHrwtXzgFbl9dE7jGOe9ZbY0G9-qfq3)
> You can download models file from [Baidu Pan](https://pan.baidu.com/s/1NN1auY2eDblGzUiqR8Bfqw) or [Google Drive](https://drive.google.com/open?id=1DQHrwtXzgFbl9dE7jGOe9ZbY0G9-qfq3)
## Start train
### Stage I: Curriculum learning
#### 1. Run Fastest
```bash
# server
python simulator_server.py --port [PORT] --ensemble_num 1
# client (Suggest: 200+ clients)
python simulator_client.py --port [PORT] --ip [IP] --reward_type RunFastest
```
#### 2. target speed 3.0 m/s
- More arguments
```bash
# Run with GPU
python test.py --use_cuda
# server
python simulator_server.py --port [PORT] --ensemble_num 1 --warm_start_batchs 1000 \
--restore_model_path [RunFastest model]
# client (Suggest: 200+ clients)
python simulator_client.py --port [PORT] --ip [IP] --reward_type FixedTargetSpeed --target_v 3.0 \
--act_penalty_lowerbound 1.5
```
# Visulize the game
python test.py --vis
#### 3. target speed 2.0 m/s
# Set the random seed
python test.py --seed 1024
```bash
# server
python simulator_server.py --port [PORT] --ensemble_num 1 --warm_start_batchs 1000 \
--restore_model_path [FixedTargetSpeed 3.0m/s model]
# Set the episode number to run
python test.py --episode_num 2
# client (Suggest: 200+ clients)
python simulator_client.py --port [PORT] --ip [IP] --reward_type FixedTargetSpeed --target_v 2.0 \
--act_penalty_lowerbound 0.75
```
### Start Training
- [ ] To be Done
#### 4. target speed 1.25 m/s
```bash
# server
python simulator_server.py --port [PORT] --ensemble_num 1 --warm_start_batchs 1000 \
--restore_model_path [FixedTargetSpeed 2.0m/s model]
# client (Suggest: 200+ clients)
python simulator_client.py --port [PORT] --ip [IP] --reward_type FixedTargetSpeed --target_v 1.25 \
--act_penalty_lowerbound 0.6
```
### Stage II: Round2
> You can download resulting 1.25m/s model in Stage I from [Baidu Pan](https://pan.baidu.com/s/1PVDgIe3NuLB-4qI5iSxtKA) or [Google Drive](https://drive.google.com/open?id=1jWzs3wvq7_ierIwGZXc-M92bv1X5eqs7)
```bash
# server
python simulator_server.py --port [PORT] --ensemble_num 12 --warm_start_batchs 1000 \
--restore_model_path [FixedTargetSpeed 1.25m/s] --restore_from_one_head
# client (Suggest: 100+ clients)
python simulator_client.py --port [PORT] --ip [IP] --reward_type Round2 --act_penalty_lowerbound 0.75 \
--act_penalty_coeff 7.0 --vel_penalty_coeff 20.0 --discrete_data --stage 3
```
> To get a higher score, you need train a seperate model for every stage (target_v change times), and fix trained model of previous stage. It's omitted here.
### Test trained model
```bash
python test.py --restore_model_path [MODEL_PATH] --ensemble_num [ENSEMBLE_NUM]
```
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
def get_server_args():
parser = argparse.ArgumentParser()
parser.add_argument('--port', required=True, type=int, help='server port')
parser.add_argument(
'--logdir', type=str, help='directory to save model/tensorboard data')
parser.add_argument(
'--restore_model_path',
type=str,
help='restore model path for warm start')
parser.add_argument(
'--restore_from_one_head',
action="store_true",
help=
'If set, will restore model from one head model. If ensemble_num > 1, will assign parameters of model0 to other models.'
)
parser.add_argument(
'--restore_rpm_path', type=str, help='restore rpm path for warm start')
parser.add_argument(
'--ensemble_num',
type=int,
required=True,
help='model number to ensemble')
parser.add_argument(
'--warm_start_batchs',
type=int,
default=100,
help='collect how many batch data to warm start')
args = parser.parse_args()
return args
def get_client_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--stage',
default=0,
type=int,
help='''
stage number, which decides change times of target velocity.
Eg: stage=0 will keep target_v 1.25m/s;
stage=3 will change target velocity 3 times, just like Round2 env.'''
)
parser.add_argument('--ident', type=int, required=False, help='worker id')
parser.add_argument('--ip', type=str, required=True, help='server ip')
parser.add_argument('--port', type=int, required=True, help='server port')
parser.add_argument(
'--target_v', type=float, help='target velocity for training')
parser.add_argument(
'--act_penalty_lowerbound',
type=float,
help='lower bound of action l2 norm penalty')
parser.add_argument(
'--act_penalty_coeff',
type=float,
default=5.0,
help='coefficient of action l2 norm penalty')
parser.add_argument(
'--vel_penalty_coeff',
type=float,
default=1.0,
help='coefficient of velocity gap penalty')
parser.add_argument(
'--discrete_data',
action="store_true",
help=
'if set, discrete target velocity in last stage (args.stage), make target velocity more uniform.'
)
parser.add_argument(
'--discrete_bin',
type=int,
default=10,
help='discrete target velocity in last stage to how many intervals')
parser.add_argument(
'--reward_type',
type=str,
help=
"Choose reward type, 'RunFastest' or 'FixedTargetSpeed' or 'Round2'")
parser.add_argument(
'--debug',
action="store_true",
help='if set, will print debug information')
args = parser.parse_args()
assert args.reward_type in ['RunFastest', 'FixedTargetSpeed', 'Round2']
return args
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import copy
import gym
import math
import numpy as np
from collections import OrderedDict
from osim.env import ProstheticsEnv
from parl.utils import logger
MAXTIME_LIMIT = 1000
ProstheticsEnv.time_limit = MAXTIME_LIMIT
FRAME_SKIP = None
FALL_PENALTY = 0
class RemoteEnv(gym.Wrapper):
def __init__(self, env):
env.metadata = {}
env.action_space = None
env.observation_space = None
env.reward_range = None
gym.Wrapper.__init__(self, env)
self.remote_env = env
self.first_time = True
def step(self, act):
return self.remote_env.env_step(act.tolist())
def reset(self):
if self.first_time:
self.first_time = False
return self.remote_env.env_create()
obs = self.remote_env.env_reset()
if not obs:
return None
return obs
def calc_vel_diff(state_desc):
cur_vel_x = state_desc['body_vel']['pelvis'][0]
cur_vel_z = state_desc['body_vel']['pelvis'][2]
target_vel_x = state_desc['target_vel'][0]
target_vel_z = state_desc['target_vel'][2]
diff_vel_x = cur_vel_x - target_vel_x
diff_vel_z = cur_vel_z - target_vel_z
cur_vel = (cur_vel_x**2 + cur_vel_z**2)**0.5
target_vel = (target_vel_x**2 + target_vel_z**2)**0.5
diff_vel = cur_vel - target_vel
target_theta = math.atan(-1.0 * target_vel_z / target_vel_x)
# alone y axis
cur_theta = state_desc['body_pos_rot']['pelvis'][1]
diff_theta = cur_theta - target_theta
return cur_vel_x, cur_vel_z, diff_vel_x, diff_vel_z, diff_vel, diff_theta
class ActionScale(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
def step(self, action, **kwargs):
action = (np.copy(action) + 1.0) * 0.5
action = np.clip(action, 0.0, 1.0)
return self.env.step(action, **kwargs)
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class FrameSkip(gym.Wrapper):
def __init__(self, env, k):
gym.Wrapper.__init__(self, env)
self.frame_skip = k
global FRAME_SKIP
FRAME_SKIP = k
self.frame_count = 0
def step(self, action, **kwargs):
r = 0.0
merge_info = {}
for k in range(self.frame_skip):
self.frame_count += 1
obs, reward, done, info = self.env.step(action, **kwargs)
r += reward
for key in info.keys():
if 'reward' in key:
# to assure that we don't igonre other reward
# if new reward was added, consider its logic here
assert (key == 'shaping_reward') or (key == 'r2_reward')
merge_info[key] = merge_info.get(key, 0.0) + info[key]
else:
merge_info[key] = info[key]
if info['target_changed']:
#merge_info['shaping_reward'] += info['shaping_reward'] * (self.frame_skip - k - 1)
logger.warn("[FrameSkip] early break since target was changed")
break
if done:
break
merge_info['frame_count'] = self.frame_count
return obs, r, done, merge_info
def reset(self, **kwargs):
self.frame_count = 0
return self.env.reset(**kwargs)
class RewardShaping(gym.Wrapper):
""" A wrapper for reward shaping, note this wrapper must be the first wrapper """
def __init__(self, env):
logger.info("[RewardShaping]type:{}".format(type(env)))
self.step_count = 0
self.pre_state_desc = None
self.last_target_vel = None
self.last_target_change_step = 0
self.target_change_times = 0
gym.Wrapper.__init__(self, env)
@abc.abstractmethod
def reward_shaping(self, state_desc, reward, done, action):
"""define your own reward computation function
Args:
state_desc(dict): state description for current model
reward(scalar): generic reward generated by env
done(bool): generic done flag generated by env
"""
pass
def step(self, action, **kwargs):
self.step_count += 1
obs, r, done, info = self.env.step(action, **kwargs)
info = self.reward_shaping(obs, r, done, action)
if info['target_vel'] > 2.75:
rate = math.sqrt((2.75**2) / (info['target_vel']**2))
logger.warn('Changing targets, origin targets: {}'.format(
obs['target_vel']))
obs['target_vel'][0] = obs['target_vel'][0] * rate
obs['target_vel'][2] = obs['target_vel'][2] * rate
logger.warn('Changing targets, new targets: {}'.format(
obs['target_vel']))
info['target_vel'] = 2.75
if info['target_vel'] < -0.25:
rate = math.sqrt(((-0.25)**2) / (info['target_vel']**2))
logger.warn('Changing targets, origin targets: {}'.format(
obs['target_vel']))
obs['target_vel'][0] = obs['target_vel'][0] * rate
obs['target_vel'][2] = obs['target_vel'][2] * rate
logger.warn('Changing targets, new targets: {}'.format(
obs['target_vel']))
info['target_vel'] = -0.25
delta = 0
if self.last_target_vel is not None:
delta = np.absolute(
np.array(self.last_target_vel) - np.array(obs['target_vel']))
if (self.last_target_vel is None) or np.all(delta < 1e-5):
info['target_changed'] = False
else:
info['target_changed'] = True
logger.info("[env_wrapper] target_changed, vx:{} vz:{}".format(
obs['target_vel'][0], obs['target_vel'][2]))
self.last_target_change_step = self.step_count
self.target_change_times += 1
info['target_change_times'] = self.target_change_times
self.last_target_vel = obs['target_vel']
assert 'shaping_reward' in info
timeout = False
if self.step_count >= MAXTIME_LIMIT:
timeout = True
if done and not timeout:
# penalty for falling down
info['shaping_reward'] += FALL_PENALTY
info['timeout'] = timeout
self.pre_state_desc = obs
return obs, r, done, info
def reset(self, **kwargs):
self.step_count = 0
self.last_target_vel = None
self.last_target_change_step = 0
self.target_change_times = 0
obs = self.env.reset(**kwargs)
self.pre_state_desc = obs
return obs
class ForwardReward(RewardShaping):
""" A reward shaping wraper"""
def __init__(self, env):
RewardShaping.__init__(self, env)
def reward_shaping(self, state_desc, r2_reward, done, action):
target_vel = math.sqrt(state_desc["target_vel"][0]**2 +
state_desc["target_vel"][2]**2)
if state_desc["target_vel"][0] < 0:
target_vel = -target_vel
info = {
'shaping_reward': r2_reward,
'target_vel': target_vel,
'r2_reward': r2_reward,
}
return info
class ObsTranformerBase(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
self.step_fea = MAXTIME_LIMIT
self.raw_obs = None
global FRAME_SKIP
self.frame_skip = int(FRAME_SKIP)
def get_observation(self, state_desc):
obs = self._get_observation(state_desc)
if not isinstance(self, PelvisBasedObs):
cur_vel_x, cur_vel_z, diff_vel_x, diff_vel_z, diff_vel, diff_theta = calc_vel_diff(
state_desc)
obs = np.append(obs, [
cur_vel_x, cur_vel_z, diff_vel_x, diff_vel_z, diff_vel,
diff_theta
])
else:
pass
return obs
@abc.abstractmethod
def _get_observation(self, state_desc):
pass
def feature_normalize(self, obs, mean, std, duplicate_id):
scaler_len = mean.shape[0]
assert obs.shape[0] >= scaler_len
obs[:scaler_len] = (obs[:scaler_len] - mean) / std
final_obs = []
for i in range(obs.shape[0]):
if i not in duplicate_id:
final_obs.append(obs[i])
return np.array(final_obs)
def step(self, action, **kwargs):
obs, r, done, info = self.env.step(action, **kwargs)
if info['target_changed']:
# reset step_fea when change target
self.step_fea = MAXTIME_LIMIT
self.step_fea -= FRAME_SKIP
self.raw_obs = copy.deepcopy(obs)
obs = self.get_observation(obs)
self.raw_obs['step_count'] = MAXTIME_LIMIT - self.step_fea
return obs, r, done, info
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
if obs is None:
return None
self.step_fea = MAXTIME_LIMIT
self.raw_obs = copy.deepcopy(obs)
obs = self.get_observation(obs)
self.raw_obs['step_count'] = MAXTIME_LIMIT - self.step_fea
return obs
class PelvisBasedObs(ObsTranformerBase):
def __init__(self, env):
ObsTranformerBase.__init__(self, env)
data = np.load('./pelvisBasedObs_scaler.npz')
self.mean, self.std, self.duplicate_id = data['mean'], data[
'std'], data['duplicate_id']
self.duplicate_id = self.duplicate_id.astype(np.int32).tolist()
def get_core_matrix(self, yaw):
core_matrix = np.zeros(shape=(3, 3))
core_matrix[0][0] = math.cos(yaw)
core_matrix[0][2] = -1.0 * math.sin(yaw)
core_matrix[1][1] = 1
core_matrix[2][0] = math.sin(yaw)
core_matrix[2][2] = math.cos(yaw)
return core_matrix
def _get_observation(self, state_desc):
o = OrderedDict()
for body_part in [
'pelvis', 'femur_r', 'pros_tibia_r', 'pros_foot_r', 'femur_l',
'tibia_l', 'talus_l', 'calcn_l', 'toes_l', 'torso', 'head'
]:
# position
o[body_part + '_x'] = state_desc['body_pos'][body_part][0]
o[body_part + '_y'] = state_desc['body_pos'][body_part][1]
o[body_part + '_z'] = state_desc['body_pos'][body_part][2]
# velocity
o[body_part + '_v_x'] = state_desc["body_vel"][body_part][0]
o[body_part + '_v_y'] = state_desc["body_vel"][body_part][1]
o[body_part + '_v_z'] = state_desc["body_vel"][body_part][2]
o[body_part + '_x_r'] = state_desc["body_pos_rot"][body_part][0]
o[body_part + '_y_r'] = state_desc["body_pos_rot"][body_part][1]
o[body_part + '_z_r'] = state_desc["body_pos_rot"][body_part][2]
o[body_part + '_v_x_r'] = state_desc["body_vel_rot"][body_part][0]
o[body_part + '_v_y_r'] = state_desc["body_vel_rot"][body_part][1]
o[body_part + '_v_z_r'] = state_desc["body_vel_rot"][body_part][2]
for joint in [
'hip_r', 'knee_r', 'ankle_r', 'hip_l', 'knee_l', 'ankle_l',
'back'
]:
if 'hip' not in joint:
o[joint + '_joint_pos'] = state_desc['joint_pos'][joint][0]
o[joint + '_joint_vel'] = state_desc['joint_vel'][joint][0]
else:
for i in range(3):
o[joint + '_joint_pos_' +
str(i)] = state_desc['joint_pos'][joint][i]
o[joint + '_joint_vel_' +
str(i)] = state_desc['joint_vel'][joint][i]
# In NIPS2017, only use activation
for muscle in sorted(state_desc["muscles"].keys()):
activation = state_desc["muscles"][muscle]["activation"]
if isinstance(activation, float):
activation = [activation]
for i, val in enumerate(activation):
o[muscle + '_activation_' + str(i)] = activation[i]
fiber_length = state_desc["muscles"][muscle]["fiber_length"]
if isinstance(fiber_length, float):
fiber_length = [fiber_length]
for i, val in enumerate(fiber_length):
o[muscle + '_fiber_length_' + str(i)] = fiber_length[i]
fiber_velocity = state_desc["muscles"][muscle]["fiber_velocity"]
if isinstance(fiber_velocity, float):
fiber_velocity = [fiber_velocity]
for i, val in enumerate(fiber_velocity):
o[muscle + '_fiber_velocity_' + str(i)] = fiber_velocity[i]
# z axis of mass have some problem now, delete it later
o['mass_x'] = state_desc["misc"]["mass_center_pos"][0]
o['mass_y'] = state_desc["misc"]["mass_center_pos"][1]
o['mass_z'] = state_desc["misc"]["mass_center_pos"][2]
o['mass_v_x'] = state_desc["misc"]["mass_center_vel"][0]
o['mass_v_y'] = state_desc["misc"]["mass_center_vel"][1]
o['mass_v_z'] = state_desc["misc"]["mass_center_vel"][2]
for key in ['talus_l_y', 'toes_l_y']:
o['touch_indicator_' + key] = np.clip(0.05 - o[key] * 10 + 0.5, 0.,
1.)
o['touch_indicator_2_' + key] = np.clip(0.1 - o[key] * 10 + 0.5,
0., 1.)
# Tranformer
core_matrix = self.get_core_matrix(o['pelvis_y_r'])
pelvis_pos = np.array([o['pelvis_x'], o['pelvis_y'],
o['pelvis_z']]).reshape((3, 1))
pelvis_vel = np.array(
[o['pelvis_v_x'], o['pelvis_v_y'], o['pelvis_v_z']]).reshape((3,
1))
for body_part in [
'mass', 'femur_r', 'pros_tibia_r', 'pros_foot_r', 'femur_l',
'tibia_l', 'talus_l', 'calcn_l', 'toes_l', 'torso', 'head'
]:
# rotation
if body_part != 'mass':
o[body_part + '_y_r'] -= o['pelvis_y_r']
o[body_part + '_v_y_r'] -= o['pelvis_v_y_r']
# position/velocity
global_pos = []
global_vel = []
for each in ['_x', '_y', '_z']:
global_pos.append(o[body_part + each])
global_vel.append(o[body_part + '_v' + each])
global_pos = np.array(global_pos).reshape((3, 1))
global_vel = np.array(global_vel).reshape((3, 1))
pelvis_rel_pos = core_matrix.dot(global_pos - pelvis_pos)
w = o['pelvis_v_y_r']
offset = np.array(
[-w * pelvis_rel_pos[2], 0, w * pelvis_rel_pos[0]])
pelvis_rel_vel = core_matrix.dot(global_vel - pelvis_vel) + offset
for i, each in enumerate(['_x', '_y', '_z']):
o[body_part + each] = pelvis_rel_pos[i][0]
o[body_part + '_v' + each] = pelvis_rel_vel[i][0]
for key in ['pelvis_x', 'pelvis_z', 'pelvis_y_r']:
del o[key]
current_v = np.array(state_desc['body_vel']['pelvis']).reshape((3, 1))
pelvis_current_v = core_matrix.dot(current_v)
o['pelvis_v_x'] = pelvis_current_v[0]
o['pelvis_v_z'] = pelvis_current_v[2]
res = np.array(list(o.values()))
res = self.feature_normalize(
res, mean=self.mean, std=self.std, duplicate_id=self.duplicate_id)
feet_dis = ((o['tibia_l_x'] - o['pros_tibia_r_x'])**2 +
(o['tibia_l_z'] - o['pros_tibia_r_z'])**2)**0.5
res = np.append(res, feet_dis)
remaining_time = (self.step_fea -
(MAXTIME_LIMIT / 2.0)) / (MAXTIME_LIMIT / 2.0) * -1.0
#logger.info('remaining_time fea: {}'.format(remaining_time))
res = np.append(res, remaining_time)
# target driven
target_v = np.array(state_desc['target_vel']).reshape((3, 1))
pelvis_target_v = core_matrix.dot(target_v)
diff_vel_x = pelvis_target_v[0] - pelvis_current_v[0]
diff_vel_z = pelvis_target_v[2] - pelvis_current_v[2]
diff_vel = np.sqrt(pelvis_target_v[0] ** 2 + pelvis_target_v[2] ** 2) - \
np.sqrt(pelvis_current_v[0] ** 2 + pelvis_current_v[2] ** 2)
target_vel_x = target_v[0]
target_vel_z = target_v[2]
target_theta = math.atan(-1.0 * target_vel_z / target_vel_x)
current_theta = state_desc['body_pos_rot']['pelvis'][1]
diff_theta = target_theta - current_theta
res = np.append(res, [
diff_vel_x[0] / 3.0, diff_vel_z[0] / 3.0, diff_vel[0] / 3.0,
diff_theta / (np.pi * 3 / 8)
])
return res
if __name__ == '__main__':
from osim.env import ProstheticsEnv
env = ProstheticsEnv(visualize=False)
env.change_model(model='3D', difficulty=1, prosthetic=True)
env = ForwardReward(env)
env = FrameSkip(env, 4)
env = ActionScale(env)
env = PelvisBasedObs(env)
for i in range(64):
observation = env.reset(project=False)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import time
from env_wrapper import FrameSkip, ActionScale, PelvisBasedObs, ForwardReward
from osim.env import ProstheticsEnv
from parl.utils import logger
from submit_model import SubmitModel
def play_multi_episode(submit_model, episode_num=2, vis=False, seed=0):
np.random.seed(seed)
env = ProstheticsEnv(visualize=vis)
env.change_model(model='3D', difficulty=1, prosthetic=True, seed=seed)
env = ForwardReward(env)
env = FrameSkip(env, 4)
env = ActionScale(env)
env = PelvisBasedObs(env)
all_reward = []
all_shaping_reward = 0
last_frames_count = 0
for e in range(episode_num):
t = time.time()
episode_reward = 0.0
episode_shaping_reward = 0.0
observation = env.reset(project=False)
target_change_times = 0
step = 0
loss = []
while True:
step += 1
action = submit_model.pred_batch(observation, target_change_times)
observation, reward, done, info = env.step(action, project=False)
step_frames = info['frame_count'] - last_frames_count
last_frames_count = info['frame_count']
episode_reward += reward
# we pacle it here to drop the first step after changing
if target_change_times >= 1:
loss.append(10 * step_frames - reward)
if info['target_changed']:
target_change_times = min(target_change_times + 1, 3)
logger.info("[step/{}]reward:{} info:{}".format(
step, reward, info))
episode_shaping_reward += info['shaping_reward']
if done:
break
all_reward.append(episode_reward)
all_shaping_reward += episode_shaping_reward
t = time.time() - t
logger.info(
"[episode/{}] time: {} episode_reward:{} change_loss:{} after_change_loss:{} mean_reward:{}"
.format(e, t, episode_reward, np.sum(loss[:15]), np.sum(loss[15:]),
np.mean(all_reward)))
logger.info("Mean reward:{}".format(np.mean(all_reward)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_cuda', action="store_true", help='If set, will run in gpu 0')
parser.add_argument(
'--vis', action="store_true", help='If set, will visualize.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument(
'--episode_num', type=int, default=1, help='Episode number to run.')
args = parser.parse_args()
submit_model = SubmitModel(use_cuda=args.use_cuda)
play_multi_episode(
submit_model,
episode_num=args.episode_num,
vis=args.vis,
seed=args.seed)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl.layers as layers
from copy import deepcopy
from paddle import fluid
from parl.framework.algorithm_base import Algorithm
__all__ = ['MultiHeadDDPG']
class MultiHeadDDPG(Algorithm):
def __init__(self, models, hyperparas):
""" model: should implement the function get_actor_params()
"""
self.models = models
self.target_models = []
for model in models:
target_model = deepcopy(model)
self.target_models.append(target_model)
# fetch hyper parameters
self.gamma = hyperparas['gamma']
self.tau = hyperparas['tau']
self.ensemble_num = hyperparas['ensemble_num']
def define_predict(self, obs, model_id):
""" use actor model of self.models[model_id] to predict the action
"""
return self.models[model_id].policy(obs)
def define_ensemble_predict(self, obs):
""" ensemble predict:
1. For actions of all actors, each critic will score them
and normalize its scores;
2. For each actor, will calculate its score by
average scores given by all critics
3. choose action of the actor whose score is best
"""
actor_outputs = []
for i in range(self.ensemble_num):
actor_outputs.append(self.models[i].policy(obs))
batch_actions = layers.concat(actor_outputs, axis=0)
batch_obs = layers.expand(obs, expand_times=[self.ensemble_num, 1])
critic_outputs = []
for i in range(self.ensemble_num):
critic_output = self.models[i].value(batch_obs, batch_actions)
critic_output = layers.unsqueeze(critic_output, axes=[1])
critic_outputs.append(critic_output)
score_matrix = layers.concat(critic_outputs, axis=1)
# Normalize scores given by each critic
sum_critic_score = layers.reduce_sum(
score_matrix, dim=0, keep_dim=True)
sum_critic_score = layers.expand(
sum_critic_score, expand_times=[self.ensemble_num, 1])
norm_score_matrix = score_matrix / sum_critic_score
actions_mean_score = layers.reduce_mean(
norm_score_matrix, dim=1, keep_dim=True)
best_score_id = layers.argmax(actions_mean_score, axis=0)
best_score_id = layers.cast(best_score_id, dtype='int32')
ensemble_predict_action = layers.gather(batch_actions, best_score_id)
return ensemble_predict_action
def define_learn(self, obs, action, reward, next_obs, terminal, actor_lr,
critic_lr, model_id):
""" update actor and critic model of self.models[model_id] with DDPG algorithm
"""
actor_cost = self._actor_learn(obs, actor_lr, model_id)
critic_cost = self._critic_learn(obs, action, reward, next_obs,
terminal, critic_lr, model_id)
return actor_cost, critic_cost
def _actor_learn(self, obs, actor_lr, model_id):
action = self.models[model_id].policy(obs)
Q = self.models[model_id].value(obs, action)
cost = layers.reduce_mean(-1.0 * Q)
optimizer = fluid.optimizer.AdamOptimizer(actor_lr)
optimizer.minimize(
cost, parameter_list=self.models[model_id].get_actor_params())
return cost
def _critic_learn(self, obs, action, reward, next_obs, terminal, critic_lr,
model_id):
next_action = self.target_models[model_id].policy(next_obs)
next_Q = self.target_models[model_id].value(next_obs, next_action)
terminal = layers.cast(terminal, dtype='float32')
target_Q = reward + (1.0 - terminal) * self.gamma * next_Q
target_Q.stop_gradient = True
Q = self.models[model_id].value(obs, action)
cost = layers.square_error_cost(Q, target_Q)
cost = layers.reduce_mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(critic_lr)
optimizer.minimize(cost)
return cost
def sync_target(self,
gpu_id,
model_id,
decay=None,
share_vars_parallel_executor=None):
if decay is None:
decay = 1.0 - self.tau
self.models[model_id].sync_params_to(
self.target_models[model_id],
gpu_id=gpu_id,
decay=decay,
share_vars_parallel_executor=share_vars_parallel_executor)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import parl.layers as layers
import re
from paddle import fluid
from paddle.fluid.executor import _fetch_var
from parl.framework.agent_base import Agent
from parl.utils import logger
class OpenSimAgent(Agent):
def __init__(self, algorithm, obs_dim, act_dim, ensemble_num):
self.obs_dim = obs_dim
self.act_dim = act_dim
self.ensemble_num = ensemble_num
super(OpenSimAgent, self).__init__(algorithm)
# Use ParallelExecutor to make program running faster
use_cuda = True if self.gpu_id >= 0 else False
self.learn_pe = []
self.pred_pe = []
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = 4
build_strategy = fluid.BuildStrategy()
build_strategy.remove_unnecessary_lock = True
for i in range(self.ensemble_num):
with fluid.scope_guard(fluid.global_scope().new_scope()):
pe = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=self.learn_programs[i],
exec_strategy=exec_strategy,
build_strategy=build_strategy)
self.learn_pe.append(pe)
with fluid.scope_guard(fluid.global_scope().new_scope()):
pe = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=self.predict_programs[i],
exec_strategy=exec_strategy,
build_strategy=build_strategy)
self.pred_pe.append(pe)
# Attention: In the beginning, sync target model totally.
self.alg.sync_target(
gpu_id=self.gpu_id,
model_id=i,
decay=1.0,
share_vars_parallel_executor=self.learn_pe[i])
# Do cache, will create ParallelExecutor of sync params in advance
# If not, there are some issues when ensemble_num > 1
self.alg.sync_target(
gpu_id=self.gpu_id,
model_id=i,
share_vars_parallel_executor=self.learn_pe[i])
with fluid.scope_guard(fluid.global_scope().new_scope()):
self.ensemble_predict_pe = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=self.ensemble_predict_program,
exec_strategy=exec_strategy,
build_strategy=build_strategy)
def build_program(self):
self.predict_programs = []
self.predict_outputs = []
self.learn_programs = []
self.learn_programs_output = []
for i in range(self.ensemble_num):
predict_program = fluid.Program()
with fluid.program_guard(predict_program):
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
act = self.alg.define_predict(obs, model_id=i)
self.predict_programs.append(predict_program)
self.predict_outputs.append([act.name])
learn_program = fluid.Program()
with fluid.program_guard(learn_program):
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
act = layers.data(
name='act', shape=[self.act_dim], dtype='float32')
reward = layers.data(name='reward', shape=[], dtype='float32')
next_obs = layers.data(
name='next_obs', shape=[self.obs_dim], dtype='float32')
terminal = layers.data(name='terminal', shape=[], dtype='bool')
actor_lr = layers.data(
name='actor_lr',
shape=[1],
dtype='float32',
append_batch_size=False)
critic_lr = layers.data(
name='critic_lr',
shape=[1],
dtype='float32',
append_batch_size=False)
actor_loss, critic_loss = self.alg.define_learn(
obs,
act,
reward,
next_obs,
terminal,
actor_lr,
critic_lr,
model_id=i)
self.learn_programs.append(learn_program)
self.learn_programs_output.append([critic_loss.name])
self.ensemble_predict_program = fluid.Program()
with fluid.program_guard(self.ensemble_predict_program):
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
act = self.alg.define_ensemble_predict(obs)
self.ensemble_predict_output = [act.name]
def predict(self, obs, model_id):
feed = {'obs': obs}
feed = [feed]
act = self.pred_pe[model_id].run(
feed=feed, fetch_list=self.predict_outputs[model_id])[0]
return act
def ensemble_predict(self, obs):
feed = {'obs': obs}
feed = [feed]
act = self.ensemble_predict_pe.run(
feed=feed, fetch_list=self.ensemble_predict_output)[0]
return act
def learn(self, obs, act, reward, next_obs, terminal, actor_lr, critic_lr,
model_id):
feed = {
'obs': obs,
'act': act,
'reward': reward,
'next_obs': next_obs,
'terminal': terminal,
'actor_lr': actor_lr,
'critic_lr': critic_lr
}
feed = [feed]
critic_loss = self.learn_pe[model_id].run(
feed=feed, fetch_list=self.learn_programs_output[model_id])[0]
self.alg.sync_target(
gpu_id=self.gpu_id,
model_id=model_id,
share_vars_parallel_executor=self.learn_pe[model_id])
return critic_loss
def save_params(self, dirname):
for i in range(self.ensemble_num):
fluid.io.save_params(
executor=self.fluid_executor,
dirname=dirname,
main_program=self.learn_programs[i])
def load_params(self, dirname, from_one_head):
if from_one_head:
logger.info('[From one head, extend to multi head:]')
# load model 0
fluid.io.load_params(
executor=self.fluid_executor,
dirname=dirname,
main_program=self.learn_programs[0])
# sync identity params of model/target_model 0 to other models/target_models
for i in range(1, self.ensemble_num):
params = list(
filter(
lambda x: 'identity' in x.name and '@GRAD' not in x.name,
self.learn_programs[i].list_vars()))
for param in params:
param_var = _fetch_var(param.name, return_numpy=False)
model0_name = re.sub(r"identity_\d+", "identity_0",
param.name)
model0_value = _fetch_var(model0_name, return_numpy=True)
logger.info('{} -> {}'.format(model0_name, param.name))
param_var.set(model0_value, self.place)
# sync share params of target_model 0 to other target models
# After deepcopy, shapre params between target models is different
for i in range(1, self.ensemble_num):
params = list(
filter(
lambda x: 'shared' in x.name and 'PARL_target' in x.name and '@GRAD' not in x.name,
self.learn_programs[i].list_vars()))
for param in params:
param_var = _fetch_var(param.name, return_numpy=False)
model0_name = re.sub(r"_\d+$", "_0", param.name)
model0_value = _fetch_var(model0_name, return_numpy=True)
logger.info('{} -> {}'.format(model0_name, param.name))
param_var.set(model0_value, self.place)
else:
for i in range(self.ensemble_num):
fluid.io.load_params(
executor=self.fluid_executor,
dirname=dirname,
main_program=self.learn_programs[i])
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl.layers as layers
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from parl.framework.model_base import Model
class OpenSimModel(Model):
def __init__(self, obs_dim, vel_obs_dim, act_dim, model_id=0, shared=True):
self.actor_model = ActorModel(obs_dim, vel_obs_dim, act_dim, model_id,
shared)
self.critic_model = CriticModel(obs_dim, vel_obs_dim, act_dim,
model_id, shared)
def policy(self, obs):
return self.actor_model.policy(obs)
def value(self, obs, action):
return self.critic_model.value(obs, action)
def get_actor_params(self):
return self.actor_model.parameter_names
class ActorModel(Model):
def __init__(self, obs_dim, vel_obs_dim, act_dim, model_id, shared):
hid0_size = 800
hid1_size = 400
hid2_size = 200
vel_hid0_size = 200
vel_hid1_size = 400
self.obs_dim = obs_dim
self.vel_obs_dim = vel_obs_dim
# bottom layers
if shared:
scope_name = 'policy_shared'
else:
scope_name = 'policy_identity_{}'.format(model_id)
self.fc0 = layers.fc(
size=hid0_size,
act='tanh',
param_attr=ParamAttr(name='{}/h0/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/h0/b'.format(scope_name)))
self.fc1 = layers.fc(
size=hid1_size,
act='tanh',
param_attr=ParamAttr(name='{}/h1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/h1/b'.format(scope_name)))
self.vel_fc0 = layers.fc(
size=vel_hid0_size,
act='tanh',
param_attr=ParamAttr(name='{}/vel_h0/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/vel_h0/b'.format(scope_name)))
self.vel_fc1 = layers.fc(
size=vel_hid1_size,
act='tanh',
param_attr=ParamAttr(name='{}/vel_h1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/vel_h1/b'.format(scope_name)))
# top layers
scope_name = 'policy_identity_{}'.format(model_id)
self.fc2 = layers.fc(
size=hid2_size,
act='tanh',
param_attr=ParamAttr(name='{}/h2/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/h2/b'.format(scope_name)))
self.fc3 = layers.fc(
size=act_dim,
act='tanh',
param_attr=ParamAttr(name='{}/means/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/means/b'.format(scope_name)))
def policy(self, obs):
real_obs = layers.slice(
obs, axes=[1], starts=[0], ends=[-self.vel_obs_dim])
# target related fetures
vel_obs = layers.slice(
obs, axes=[1], starts=[-self.vel_obs_dim], ends=[self.obs_dim])
hid0 = self.fc0(real_obs)
hid1 = self.fc1(hid0)
vel_hid0 = self.vel_fc0(vel_obs)
vel_hid1 = self.vel_fc1(vel_hid0)
concat = layers.concat([hid1, vel_hid1], axis=1)
hid2 = self.fc2(concat)
means = self.fc3(hid2)
return means
class CriticModel(Model):
def __init__(self, obs_dim, vel_obs_dim, act_dim, model_id, shared):
super(CriticModel, self).__init__()
hid0_size = 800
hid1_size = 400
vel_hid0_size = 200
vel_hid1_size = 400
self.obs_dim = obs_dim
self.vel_obs_dim = vel_obs_dim
# buttom layers
if shared:
scope_name = 'critic_shared'
else:
scope_name = 'critic_identity_{}'.format(model_id)
self.fc0 = layers.fc(
size=hid0_size,
act='selu',
param_attr=ParamAttr(name='{}/w1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/w1/b'.format(scope_name)))
self.fc1 = layers.fc(
size=hid1_size,
act='selu',
param_attr=ParamAttr(name='{}/h1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/h1/b'.format(scope_name)))
self.vel_fc0 = layers.fc(
size=vel_hid0_size,
act='selu',
param_attr=ParamAttr(name='{}/vel_h0/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/vel_h0/b'.format(scope_name)))
self.vel_fc1 = layers.fc(
size=vel_hid1_size,
act='selu',
param_attr=ParamAttr(name='{}/vel_h1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/vel_h1/b'.format(scope_name)))
self.act_fc0 = layers.fc(
size=hid1_size,
act='selu',
param_attr=ParamAttr(name='{}/a1/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/a1/b'.format(scope_name)))
# top layers
scope_name = 'critic_identity_{}'.format(model_id)
self.fc2 = layers.fc(
size=hid1_size,
act='selu',
param_attr=ParamAttr(name='{}/h3/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/h3/b'.format(scope_name)))
self.fc3 = layers.fc(
size=1,
act='selu',
param_attr=ParamAttr(name='{}/value/W'.format(scope_name)),
bias_attr=ParamAttr(name='{}/value/b'.format(scope_name)))
def value(self, obs, action):
real_obs = layers.slice(
obs, axes=[1], starts=[0], ends=[-self.vel_obs_dim])
# target related fetures
vel_obs = layers.slice(
obs, axes=[1], starts=[-self.vel_obs_dim], ends=[self.obs_dim])
hid0 = self.fc0(real_obs)
hid1 = self.fc1(hid0)
vel_hid0 = self.vel_fc0(vel_obs)
vel_hid1 = self.vel_fc1(vel_hid0)
a1 = self.act_fc0(action)
concat = layers.concat([hid1, a1, vel_hid1], axis=1)
hid2 = self.fc2(concat)
Q = self.fc3(hid2)
Q = layers.squeeze(Q, axes=[1])
return Q
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import grpc
import json
import numpy as np
import simulator_pb2
import simulator_pb2_grpc
from args import get_client_args
from env_wrapper import FrameSkip, ActionScale, PelvisBasedObs, MAXTIME_LIMIT, CustomR2Env, RunFastestReward, FixedTargetSpeedReward, Round2Reward
from osim.env import ProstheticsEnv
from parl.utils import logger
ProstheticsEnv.time_limit = MAXTIME_LIMIT
class Worker(object):
def __init__(self, server_ip='localhost', server_port=5007):
if args.ident is not None:
self.worker_id = args.ident
else:
self.worker_id = np.random.randint(int(1e18))
self.address = '{}:{}'.format(server_ip, server_port)
random_seed = int(self.worker_id % int(1e9))
np.random.seed(random_seed)
env = ProstheticsEnv(visualize=False, seed=random_seed)
env.change_model(
model='3D', difficulty=1, prosthetic=True, seed=random_seed)
env.spec.timestep_limit = MAXTIME_LIMIT
env = CustomR2Env(env)
if args.reward_type == 'RunFastest':
env = RunFastestReward(env)
elif args.reward_type == 'FixedTargetSpeed':
env = FixedTargetSpeedReward(
env, args.target_v, args.act_penalty_lowerbound,
args.act_penalty_coeff, args.vel_penalty_coeff)
elif args.reward_type == 'Round2':
env = Round2Reward(env, args.act_penalty_lowerbound,
args.act_penalty_coeff, args.vel_penalty_coeff)
else:
assert False, 'Not supported reward type!'
env = FrameSkip(env, 4)
env = ActionScale(env)
self.env = PelvisBasedObs(env)
def run(self):
observation = self.env.reset(project=False, stage=args.stage)
reward = 0
done = False
info = {'shaping_reward': 0.0}
info['first'] = True
with grpc.insecure_channel(self.address) as channel:
stub = simulator_pb2_grpc.SimulatorStub(channel)
while True:
response = stub.Send(
simulator_pb2.Request(
observation=observation,
reward=reward,
done=done,
info=json.dumps(info),
id=self.worker_id))
extra = json.loads(response.extra)
if 'reset' in extra and extra['reset']:
logger.info('Server require to reset!')
observation = self.env.reset(
project=False, stage=args.stage)
reward = 0
done = False
info = {'shaping_reward': 0.0}
continue
if 'shutdown' in extra and extra['shutdown']:
break
action = np.array(response.action)
next_observation, reward, done, info = self.env.step(
action, project=False)
# debug info
if args.debug:
logger.info("dim:{} obs:{} act:{} reward:{} done:{} info:{}".format(\
len(observation), np.sum(observation), np.sum(action), reward, done, info))
observation = next_observation
if done:
observation = self.env.reset(
project=False, stage=args.stage)
# the last observation should be used to compute append_value in simulator_server
info['last_obs'] = next_observation.tolist()
if __name__ == '__main__':
args = get_client_args()
worker = Worker(server_ip=args.ip, server_port=args.port)
worker.run()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: simulator.proto
import sys
_b = sys.version_info[0] < 3 and (lambda x: x) or (
lambda x: x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='simulator.proto',
package='simulator',
syntax='proto3',
serialized_pb=_b(
'\n\x0fsimulator.proto\x12\tsimulator\"V\n\x07Request\x12\x13\n\x0bobservation\x18\x01 \x03(\x01\x12\x0e\n\x06reward\x18\x02 \x01(\x01\x12\x0c\n\x04\x64one\x18\x03 \x01(\x08\x12\x0c\n\x04info\x18\x04 \x01(\t\x12\n\n\x02id\x18\x05 \x01(\x03\"&\n\x05Reply\x12\x0e\n\x06\x61\x63tion\x18\x01 \x03(\x01\x12\r\n\x05\x65xtra\x18\x02 \x01(\t2;\n\tSimulator\x12.\n\x04Send\x12\x12.simulator.Request\x1a\x10.simulator.Reply\"\x00\x62\x06proto3'
))
_REQUEST = _descriptor.Descriptor(
name='Request',
full_name='simulator.Request',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='observation',
full_name='simulator.Request.observation',
index=0,
number=1,
type=1,
cpp_type=5,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='reward',
full_name='simulator.Request.reward',
index=1,
number=2,
type=1,
cpp_type=5,
label=1,
has_default_value=False,
default_value=float(0),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='done',
full_name='simulator.Request.done',
index=2,
number=3,
type=8,
cpp_type=7,
label=1,
has_default_value=False,
default_value=False,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='info',
full_name='simulator.Request.info',
index=3,
number=4,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode('utf-8'),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='id',
full_name='simulator.Request.id',
index=4,
number=5,
type=3,
cpp_type=2,
label=1,
has_default_value=False,
default_value=0,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[],
serialized_start=30,
serialized_end=116,
)
_REPLY = _descriptor.Descriptor(
name='Reply',
full_name='simulator.Reply',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='action',
full_name='simulator.Reply.action',
index=0,
number=1,
type=1,
cpp_type=5,
label=3,
has_default_value=False,
default_value=[],
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='extra',
full_name='simulator.Reply.extra',
index=1,
number=2,
type=9,
cpp_type=9,
label=1,
has_default_value=False,
default_value=_b("").decode('utf-8'),
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
options=None,
file=DESCRIPTOR),
],
extensions=[],
nested_types=[],
enum_types=[],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[],
serialized_start=118,
serialized_end=156,
)
DESCRIPTOR.message_types_by_name['Request'] = _REQUEST
DESCRIPTOR.message_types_by_name['Reply'] = _REPLY
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
Request = _reflection.GeneratedProtocolMessageType(
'Request',
(_message.Message, ),
dict(
DESCRIPTOR=_REQUEST,
__module__='simulator_pb2'
# @@protoc_insertion_point(class_scope:simulator.Request)
))
_sym_db.RegisterMessage(Request)
Reply = _reflection.GeneratedProtocolMessageType(
'Reply',
(_message.Message, ),
dict(
DESCRIPTOR=_REPLY,
__module__='simulator_pb2'
# @@protoc_insertion_point(class_scope:simulator.Reply)
))
_sym_db.RegisterMessage(Reply)
_SIMULATOR = _descriptor.ServiceDescriptor(
name='Simulator',
full_name='simulator.Simulator',
file=DESCRIPTOR,
index=0,
options=None,
serialized_start=158,
serialized_end=217,
methods=[
_descriptor.MethodDescriptor(
name='Send',
full_name='simulator.Simulator.Send',
index=0,
containing_service=None,
input_type=_REQUEST,
output_type=_REPLY,
options=None,
),
])
_sym_db.RegisterServiceDescriptor(_SIMULATOR)
DESCRIPTOR.services_by_name['Simulator'] = _SIMULATOR
# @@protoc_insertion_point(module_scope)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
import grpc
import simulator_pb2 as simulator__pb2
class SimulatorStub(object):
"""The greeting service definition.
"""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Send = channel.unary_unary(
'/simulator.Simulator/Send',
request_serializer=simulator__pb2.Request.SerializeToString,
response_deserializer=simulator__pb2.Reply.FromString,
)
class SimulatorServicer(object):
"""The greeting service definition.
"""
def Send(self, request, context):
"""Request Action
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_SimulatorServicer_to_server(servicer, server):
rpc_method_handlers = {
'Send':
grpc.unary_unary_rpc_method_handler(
servicer.Send,
request_deserializer=simulator__pb2.Request.FromString,
response_serializer=simulator__pb2.Reply.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'simulator.Simulator', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler, ))
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import grpc
import json
import numpy as np
import os
import queue
import simulator_pb2
import simulator_pb2_grpc
import six
import time
import threading
from args import get_server_args
from collections import defaultdict
from concurrent import futures
from multi_head_ddpg import MultiHeadDDPG
from opensim_agent import OpenSimAgent
from opensim_model import OpenSimModel
from parl.utils import logger, ReplayMemory
from utils import calc_indicators, ScalarsManager, TransitionExperience
ACT_DIM = 19
VEL_DIM = 4
OBS_DIM = 185 + VEL_DIM
GAMMA = 0.96
TAU = 0.001
ACTOR_LR = 3e-5
CRITIC_LR = 3e-5
TRAIN_TIMES = 100
BATCH_SIZE = 128
NOISE_DECAY = 0.999998
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
class SimulatorServer(simulator_pb2_grpc.SimulatorServicer):
class ClientState(object):
def __init__(self):
self.memory = [] # list of Experience
self.ident = None
self.model_idx = np.random.randint(args.ensemble_num)
self.last_target_changed = 0
self.target_change_times = 0
def reset(self):
self.last_target_changed = 0
self.memory = []
self.model_idx = np.random.randint(args.ensemble_num)
self.target_change_times = 0
def update_last_target_changed(self):
self.last_target_changed = len(self.memory)
def __init__(self):
self.rpm = ReplayMemory(int(2e6), OBS_DIM, ACT_DIM)
# Need acquire lock when model learning or predicting
self.locks = []
for i in range(args.ensemble_num):
self.locks.append(threading.Lock())
models = []
for i in range(args.ensemble_num):
models.append(OpenSimModel(OBS_DIM, VEL_DIM, ACT_DIM, model_id=i))
hyperparas = {
'gamma': GAMMA,
'tau': TAU,
'ensemble_num': args.ensemble_num
}
alg = MultiHeadDDPG(models, hyperparas)
self.agent = OpenSimAgent(alg, OBS_DIM, ACT_DIM, args.ensemble_num)
self.scalars_manager = ScalarsManager(logger.get_dir())
# add lock when appending data to rpm or writing scalars to tensorboard
self.MEMORY_LOCK = threading.Lock()
self.clients = defaultdict(self.ClientState)
self.ready_client_queue = queue.Queue()
self.noiselevel = 0.5
self.global_step = 0
# thread to keep training
t = threading.Thread(target=self.keep_training)
t.start()
def _new_ready_client(self):
""" The client is ready to start new episode,
but blocking until training thread call client_ready_event.set()
"""
client_ready_event = threading.Event()
self.ready_client_queue.put(client_ready_event)
logger.info(
"[new_ready_client] approximate size of ready clients:{}".format(
self.ready_client_queue.qsize()))
client_ready_event.wait()
def Send(self, request, context):
""" Implement Send function in SimulatorServicer
Everytime a request comming, will create a new thread to handle
"""
ident, obs, reward, done, info = request.id, request.observation, request.reward, request.done, request.info
client = self.clients[ident]
info = json.loads(info)
if 'first' in info:
# Waiting training thread to allow start new episode
self._new_ready_client()
obs = np.array(obs, dtype=np.float32)
self._process_msg(ident, obs, reward, done, info)
if done:
# Waiting training thread to allow start new episode
self._new_ready_client()
action = self.pred_batch(obs, client.model_idx)
step = len(client.memory) - client.last_target_changed
# whether to add noise depends on the ensemble_num
if args.ensemble_num == 1:
current_noise = self.noiselevel * (0.98**(step - 1))
noise = np.zeros((ACT_DIM, ), dtype=np.float32)
if ident % 3 == 0:
if step % 5 == 0:
noise = np.random.randn(ACT_DIM) * current_noise
elif ident % 3 == 1:
if step % 5 == 0:
noise = np.random.randn(ACT_DIM) * current_noise * 2
action += noise
action = np.clip(action, -1, 1)
client.memory[-1].action = action
extra_info = {}
return simulator_pb2.Reply(action=action, extra=json.dumps(extra_info))
def _process_msg(self, ident, obs, reward, done, info):
client = self.clients[ident]
reward_scale = (1 - GAMMA)
info['shaping_reward'] *= reward_scale
if len(client.memory) > 0:
client.memory[-1].reward = reward
info['target_change_times'] = client.target_change_times
client.memory[-1].info = info
if info['target_changed']:
client.target_change_times = min(
client.target_change_times + 1, 3)
# re-sample model_idx after target was changed
client.model_idx = np.random.randint(args.ensemble_num)
if done:
assert 'last_obs' in info
self._parse_memory(client, ident, info['last_obs'])
client.memory.append(
TransitionExperience(obs=obs, action=None, reward=None, info=None))
if 'target_changed' in info and info['target_changed']:
client.update_last_target_changed()
return False
def _parse_memory(self, client, ident, last_obs):
mem = client.memory
n = len(mem)
# debug info
if ident == 1:
for i, exp in enumerate(mem):
logger.info(
"[step:{}] obs:{} action:{} reward:{} shaping_reward:{}".
format(i, np.sum(mem[i].obs), np.sum(mem[i].action),
mem[i].reward, mem[i].info['shaping_reward']))
episode_rpm = []
for i in range(n - 1):
if not mem[i].info['target_changed']:
episode_rpm.append([
mem[i].obs, mem[i].action, mem[i].info['shaping_reward'],
mem[i + 1].obs, False, mem[i].info['target_change_times']
])
if not mem[-1].info['target_changed']:
episode_rpm.append([
mem[-1].obs, mem[-1].action, mem[-1].info['shaping_reward'],
last_obs, not mem[-1].info['timeout'],
mem[i].info['target_change_times']
])
indicators_dict = calc_indicators(mem)
indicators_dict['free_client_num'] = self.ready_client_queue.qsize()
indicators_dict['noiselevel'] = self.noiselevel
with self.MEMORY_LOCK:
self.add_episode_rpm(episode_rpm)
self.scalars_manager.record(indicators_dict, self.global_step)
self.global_step += 1
if self.global_step >= 50:
self.noiselevel = self.noiselevel * NOISE_DECAY
client.reset()
def learn(self):
result_q = queue.Queue()
th_list = []
for j in range(args.ensemble_num):
t = threading.Thread(
target=self.train_single_model, args=(j, result_q))
th_list.append(t)
start_time = time.time()
for t in th_list:
t.start()
for t in th_list:
t.join()
logger.info("[learn] {} heads, time consuming:{}".format(
args.ensemble_num,
time.time() - start_time))
for t in th_list:
result = result_q.get()
for critic_loss in result:
self.scalars_manager.feed_critic_loss(critic_loss)
def train_single_model(self, model_idx, result_q):
logger.info("[train_single_model] model_idx:{}".format(model_idx))
critic_loss_list = []
lock = self.locks[model_idx]
memory = self.rpm
actor_lr = ACTOR_LR * (1.0 - 0.05 * model_idx)
critic_lr = CRITIC_LR * (1.0 + 0.1 * model_idx)
for T in range(TRAIN_TIMES):
[states, actions, rewards, new_states,
dones] = memory.sample_batch(BATCH_SIZE)
lock.acquire()
critic_loss = self.agent.learn(states, actions, rewards,
new_states, dones, actor_lr,
critic_lr, model_idx)
lock.release()
critic_loss_list.append(critic_loss)
result_q.put(critic_loss_list)
def keep_training(self):
episode_count = 1000000
for T in range(episode_count):
if self.rpm.size() > BATCH_SIZE * args.warm_start_batchs:
self.learn()
logger.info(
"[keep_training/{}] trying to acq a new env".format(T))
# Keep training and predicting balance
# After training, waiting for a ready client, and set the client start new episode
ready_client_event = self.ready_client_queue.get()
ready_client_event.set()
if np.mod(T, 100) == 0:
logger.info("saving models")
self.save(T)
if np.mod(T, 10000) == 0:
logger.info("saving rpm")
self.save_rpm()
def save_rpm(self):
save_path = os.path.join(logger.get_dir(), "rpm.npz")
self.rpm.save(save_path)
def restore_rpm(self, rpm_dir):
self.rpm.load(rpm_dir)
def save(self, T):
save_path = os.path.join(logger.get_dir(),
'model_every_100_episodes/step-{}'.format(T))
self.agent.save_params(save_path)
def restore(self, model_path, restore_from_one_head):
logger.info('restore model from {}'.format(model_path))
self.agent.load_params(model_path, restore_from_one_head)
def add_episode_rpm(self, episode_rpm):
for x in episode_rpm:
self.rpm.append(
obs=x[0], act=x[1], reward=x[2], next_obs=x[3], terminal=x[4])
def pred_batch(self, obs, model_idx=None):
assert model_idx is not None
batch_obs = np.expand_dims(obs, axis=0)
self.locks[model_idx].acquire()
action = self.agent.predict(batch_obs, model_idx)
self.locks[model_idx].release()
action = np.squeeze(action, axis=0)
return action
class SimulatorHandler(threading.Thread):
def __init__(self, simulator_server):
threading.Thread.__init__(self)
self.server = grpc.server(futures.ThreadPoolExecutor(max_workers=400))
simulator_pb2_grpc.add_SimulatorServicer_to_server(
simulator_server, self.server)
self.server.add_insecure_port('[::]:{}'.format(args.port))
def run(self):
self.server.start()
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
self.server.stop(0)
if __name__ == '__main__':
args = get_server_args()
if args.logdir is not None:
logger.set_dir(args.logdir)
simulator_server = SimulatorServer()
if args.restore_rpm_path is not None:
simulator_server.restore_rpm(args.restore_rpm_path)
if args.restore_model_path is not None:
simulator_server.restore(args.restore_model_path,
args.restore_from_one_head)
simulator_hanlder = SimulatorHandler(simulator_server=simulator_server)
simulator_hanlder.run()
......@@ -15,74 +15,82 @@
import argparse
import numpy as np
import time
from env_wrapper import FrameSkip, ActionScale, PelvisBasedObs, ForwardReward
from env_wrapper import FrameSkip, ActionScale, PelvisBasedObs, TestReward
from multi_head_ddpg import MultiHeadDDPG
from opensim_agent import OpenSimAgent
from opensim_model import OpenSimModel
from osim.env import ProstheticsEnv
from parl.utils import logger
from submit_model import SubmitModel
"""
Test model with ensemble predict
"""
def play_multi_episode(submit_model, episode_num=2, vis=False, seed=0):
def play_multi_episode(agent, episode_num=2, vis=False, seed=0):
np.random.seed(seed)
env = ProstheticsEnv(visualize=vis)
env.change_model(model='3D', difficulty=1, prosthetic=True, seed=seed)
env = ForwardReward(env)
env = TestReward(env)
env = FrameSkip(env, 4)
env = ActionScale(env)
env = PelvisBasedObs(env)
all_reward = []
all_shaping_reward = 0
last_frames_count = 0
for e in range(episode_num):
t = time.time()
episode_reward = 0.0
episode_shaping_reward = 0.0
observation = env.reset(project=False)
target_change_times = 0
obs = env.reset(project=False)
step = 0
loss = []
while True:
step += 1
action = submit_model.pred_batch(observation, target_change_times)
observation, reward, done, info = env.step(action, project=False)
step_frames = info['frame_count'] - last_frames_count
last_frames_count = info['frame_count']
batch_obs = np.expand_dims(obs, axis=0)
action = agent.ensemble_predict(batch_obs)
action = np.squeeze(action, axis=0)
obs, reward, done, info = env.step(action, project=False)
episode_reward += reward
# we pacle it here to drop the first step after changing
if target_change_times >= 1:
loss.append(10 * step_frames - reward)
if info['target_changed']:
target_change_times = min(target_change_times + 1, 3)
logger.info("[step/{}]reward:{} info:{}".format(
step, reward, info))
episode_shaping_reward += info['shaping_reward']
logger.info("[step/{}]reward:{}".format(step, reward))
if done:
break
all_reward.append(episode_reward)
all_shaping_reward += episode_shaping_reward
t = time.time() - t
logger.info(
"[episode/{}] time: {} episode_reward:{} change_loss:{} after_change_loss:{} mean_reward:{}"
.format(e, t, episode_reward, np.sum(loss[:15]), np.sum(loss[15:]),
np.mean(all_reward)))
"[episode/{}] time: {} episode_reward:{} mean_reward:{}".format(
e, t, episode_reward, np.mean(all_reward)))
logger.info("Mean reward:{}".format(np.mean(all_reward)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_cuda', action="store_true", help='If set, will run in gpu 0')
'--restore_model_path', type=str, help='restore model path for test')
parser.add_argument(
'--vis', action="store_true", help='If set, will visualize.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument(
'--episode_num', type=int, default=1, help='Episode number to run.')
parser.add_argument('--ensemble_num', type=int, help='ensemble_num')
args = parser.parse_args()
submit_model = SubmitModel(use_cuda=args.use_cuda)
ACT_DIM = 19
VEL_DIM = 4
OBS_DIM = 185 + VEL_DIM
GAMMA = 0.96
TAU = 0.001
models = []
for i in range(args.ensemble_num):
models.append(OpenSimModel(OBS_DIM, VEL_DIM, ACT_DIM, model_id=i))
hyperparas = {
'gamma': GAMMA,
'tau': TAU,
'ensemble_num': args.ensemble_num
}
alg = MultiHeadDDPG(models, hyperparas)
agent = OpenSimAgent(alg, OBS_DIM, ACT_DIM, args.ensemble_num)
agent.load_params(args.restore_model_path)
play_multi_episode(
submit_model,
episode_num=args.episode_num,
vis=args.vis,
seed=args.seed)
agent, episode_num=args.episode_num, vis=args.vis, seed=args.seed)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import numpy as np
import tensorflow as tf
import os
import six
class Summary(object):
"""Logging in tensorboard without tensorflow ops.
Simple example on how to log scalars and images to tensorboard without tensor ops.
License: Copyleft
__author__ = "Michael Gygli"
"""
def __init__(self, logdir):
"""Creates a summary writer logging to logdir."""
self.writer = tf.summary.FileWriter(logdir)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.Summary(
value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
self.writer.flush()
class StatCounter(object):
""" A simple counter"""
def __init__(self, max_size=50):
self.reset()
self.max_size = max_size
def feed(self, v):
"""
Args:
v(float or np.ndarray): has to be the same shape between calls.
"""
self._values.append(v)
if len(self._values) > self.max_size:
self._values = self._values[-self.max_size:]
def reset(self):
self._values = []
@property
def count(self):
return len(self._values)
@property
def mean(self):
assert len(self._values)
return np.mean(self._values)
@property
def sum(self):
assert len(self._values)
return np.sum(self._values)
@property
def max(self):
assert len(self._values)
return max(self._values)
@property
def min(self):
assert len(self._values)
return min(self._values)
@property
def success_rate(self):
count = 0
for v in self._values:
if v > 35.0:
count += 1
return float(count) / len(self._values)
def calc_indicators(mem):
START_STEPS = 15
n = len(mem)
episode_shaping_reward = np.sum(
[exp.info['shaping_reward'] for exp in mem])
episode_r2_reward = np.sum([
exp.info['r2_reward'] for exp in mem if exp.info['frame_count'] <= 1000
])
x_offset_reward = np.sum(exp.info['x_offset_reward'] for exp in mem)
episode_length = mem[-1].info['frame_count']
scalar_vel = np.mean([exp.info['scalar_vel'] for exp in mem])
action_l2_penalty = np.mean(
[exp.info['mean_action_l2_penalty'] for exp in mem])
start_loss = 10 * START_STEPS * 4 - np.sum([exp.reward
for exp in mem][:START_STEPS])
all_start_loss = 0
for i in range(n):
if not mem[i].info['target_changed']:
frame_count = 4
if i - 1 >= 0:
frame_count = mem[i].info['frame_count'] - mem[
i - 1].info['frame_count']
all_start_loss += 10.0 * frame_count - mem[i].reward
else:
break
start_other_loss = all_start_loss - start_loss
first_change_loss = 0
second_change_loss = 0
third_change_loss = 0
first_change_other_loss = 0
second_change_other_loss = 0
third_change_other_loss = 0
first_stage_vel = 0.0
second_stage_vel = 0.0
third_stage_vel = 0.0
other_loss = 0
change_loss = []
all_change_loss = []
change_vel = []
for i in range(n - 1):
if mem[i].info['target_changed']:
change_loss.append(0.0)
all_change_loss.append(0.0)
change_vel.append([])
for j in range(START_STEPS):
idx = i + 1 + j
if idx >= n or mem[idx].info['target_changed']:
break
frame_count = 4
if idx - 1 >= 0:
frame_count = mem[idx].info['frame_count'] - mem[
idx - 1].info['frame_count']
change_loss[-1] += 10.0 * frame_count - mem[idx].reward
for j in range(n - i - 1):
idx = i + 1 + j
if idx >= n or mem[idx].info['target_changed']:
break
if idx - 1 >= 0:
frame_count = mem[idx].info['frame_count'] - mem[
idx - 1].info['frame_count']
all_change_loss[-1] += 10.0 * frame_count - mem[idx].reward
change_vel[-1].append(mem[idx].info['scalar_vel'])
if len(change_loss) >= 1:
first_change_loss = change_loss[0]
first_change_other_loss = all_change_loss[0] - change_loss[0]
if len(change_loss) >= 2:
second_change_loss = change_loss[1]
second_change_other_loss = all_change_loss[1] - change_loss[1]
if len(change_loss) >= 3:
third_change_loss = change_loss[2]
third_change_other_loss = all_change_loss[2] - change_loss[2]
other_loss = 10 * mem[-1].info[
'frame_count'] - start_loss - first_change_loss - second_change_loss - third_change_loss - episode_r2_reward
if len(change_vel) >= 1:
first_stage_vel = np.mean(change_vel[0])
if len(change_vel) >= 2:
second_stage_vel = np.mean(change_vel[1])
if len(change_vel) >= 3:
third_stage_vel = np.mean(change_vel[2])
indicators_dict = {
'episode_shaping_reward': episode_shaping_reward,
'episode_r2_reward': episode_r2_reward,
'x_offset_reward': x_offset_reward,
'episode_length': episode_length,
'scalar_vel': scalar_vel,
'mean_action_l2_penalty': action_l2_penalty,
'start_loss': start_loss,
'first_change_loss': first_change_loss,
'second_change_loss': second_change_loss,
'third_change_loss': third_change_loss,
'start_other_loss': start_other_loss,
'first_change_other_loss': first_change_other_loss,
'second_change_other_loss': second_change_other_loss,
'third_change_other_loss': third_change_other_loss,
'other_loss': other_loss,
'first_stage_vel': first_stage_vel,
'second_stage_vel': second_stage_vel,
'third_stage_vel': third_stage_vel
}
return indicators_dict
class ScalarsManager(object):
def __init__(self, logdir):
self.summary = Summary(logdir=logdir)
self.max_shaping_reward = 0
self.max_x_offset_reward = 0
self.max_r2_reward = 0
self.critic_loss_counter = StatCounter(max_size=500)
self.r2_reward_counter = StatCounter(max_size=500)
self.nofall_r2_reward_counter = StatCounter(max_size=500)
self.falldown_counter100 = StatCounter(max_size=100)
self.vel_keys = [
'scalar_vel', 'first_stage_vel', 'second_stage_vel',
'third_stage_vel'
]
self.vel_counter = {}
for key in self.vel_keys:
self.vel_counter[key] = StatCounter(max_size=500)
self.reward_loss_keys = [
'start_loss', 'first_change_loss', 'second_change_loss',
'third_change_loss', 'start_other_loss', 'first_change_other_loss',
'second_change_other_loss', 'third_change_other_loss', 'other_loss'
]
self.reward_loss_counter = {}
for key in self.reward_loss_keys:
self.reward_loss_counter[key] = StatCounter(max_size=500)
def feed_critic_loss(self, critic_loss):
self.critic_loss_counter.feed(critic_loss)
def record(self, record_dict, global_step):
self.max_shaping_reward = max(self.max_shaping_reward,
record_dict['episode_shaping_reward'])
self.max_x_offset_reward = max(self.max_x_offset_reward,
record_dict['x_offset_reward'])
self.max_r2_reward = max(self.max_r2_reward,
record_dict['episode_r2_reward'])
self.r2_reward_counter.feed(record_dict['episode_r2_reward'])
if record_dict['episode_length'] >= 1000: # no falldown
self.nofall_r2_reward_counter.feed(
record_dict['episode_r2_reward'])
self.falldown_counter100.feed(0.0)
else:
self.falldown_counter100.feed(1.0)
for key in self.reward_loss_keys:
self.reward_loss_counter[key].feed(record_dict[key])
for key in self.vel_keys:
self.vel_counter[key].feed(record_dict[key])
self.summary.log_scalar('performance/falldown_rate',
self.falldown_counter100.sum / 100.0,
global_step)
self.summary.log_scalar('performance/max_r2_reward',
self.max_r2_reward, global_step)
self.summary.log_scalar('performance/max_shaping_reward',
self.max_shaping_reward, global_step)
self.summary.log_scalar('performance/max_x_offset_reward',
self.max_x_offset_reward, global_step)
self.summary.log_scalar('performance/episode_r2_reward',
record_dict['episode_r2_reward'], global_step)
self.summary.log_scalar('performance/episode_shaping_reward',
record_dict['episode_shaping_reward'],
global_step)
self.summary.log_scalar('performance/x_offset_reward',
record_dict['x_offset_reward'], global_step)
self.summary.log_scalar('performance/episode_length',
record_dict['episode_length'], global_step)
self.summary.log_scalar('performance/mean_action_l2_penalty',
record_dict['mean_action_l2_penalty'],
global_step)
self.summary.log_scalar('server/free_client_num',
record_dict['free_client_num'], global_step)
self.summary.log_scalar('model/noiselevel', record_dict['noiselevel'],
global_step)
if self.critic_loss_counter.count > 0:
mean_critic_loss = self.critic_loss_counter.mean
self.summary.log_scalar('model/critic_loss', mean_critic_loss,
global_step)
if self.r2_reward_counter.count > 400:
mean_r2_reward = self.r2_reward_counter.mean
self.summary.log_scalar('performance/recent_r2_reward',
mean_r2_reward, global_step)
mean_nofall_r2_reward = self.nofall_r2_reward_counter.mean
self.summary.log_scalar('performance/recent_nofall_r2_reward',
mean_nofall_r2_reward, global_step)
for key in self.vel_keys:
self.summary.log_scalar('scalar_vel/{}'.format(key),
self.vel_counter[key].mean,
global_step)
for key in self.reward_loss_keys:
if 'first' in key:
self.summary.log_scalar('1_stage_loss_reward/' + key,
self.reward_loss_counter[key].mean,
global_step)
elif 'second' in key:
self.summary.log_scalar('2_stage_loss_reward/' + key,
self.reward_loss_counter[key].mean,
global_step)
elif 'third' in key:
self.summary.log_scalar('3_stage_loss_reward/' + key,
self.reward_loss_counter[key].mean,
global_step)
elif 'start' in key:
self.summary.log_scalar('0_stage_loss_reward/' + key,
self.reward_loss_counter[key].mean,
global_step)
else:
self.summary.log_scalar('loss_reward/' + key,
self.reward_loss_counter[key].mean,
global_step)
self.summary.log_scalar(
'0_stage_loss_reward/stage_loss',
self.reward_loss_counter['start_loss'].mean +
self.reward_loss_counter['start_other_loss'].mean, global_step)
self.summary.log_scalar(
'1_stage_loss_reward/stage_loss',
self.reward_loss_counter['first_change_loss'].mean +
self.reward_loss_counter['first_change_other_loss'].mean,
global_step)
self.summary.log_scalar(
'2_stage_loss_reward/stage_loss',
self.reward_loss_counter['second_change_loss'].mean +
self.reward_loss_counter['second_change_other_loss'].mean,
global_step)
self.summary.log_scalar(
'3_stage_loss_reward/stage_loss',
self.reward_loss_counter['third_change_loss'].mean +
self.reward_loss_counter['third_change_other_loss'].mean,
global_step)
class TransitionExperience(object):
""" A transition of state, or experience"""
def __init__(self, obs, action, reward, info, **kwargs):
""" kwargs: whatever other attribute you want to save"""
self.obs = obs
self.action = action
self.reward = reward
self.info = info
for k, v in six.iteritems(kwargs):
setattr(self, k, v)
......@@ -25,12 +25,11 @@ from utils import *
def run_train_episode(env, agent, scaler):
obs = env.reset()
observes, actions, rewards, unscaled_obs = [], [], [], []
done = False
step = 0.0
scale, offset = scaler.get()
scale[-1] = 1.0 # don't scale time step feature
offset[-1] = 0.0 # don't offset time step feature
while not done:
while True:
obs = obs.reshape((1, -1))
obs = np.append(obs, [[step]], axis=1) # add time step feature
unscaled_obs.append(obs)
......@@ -50,6 +49,9 @@ def run_train_episode(env, agent, scaler):
rewards.append(reward)
step += 1e-3 # increment time step feature
if done:
break
return (np.concatenate(observes), np.concatenate(actions),
np.array(rewards, dtype='float32'), np.concatenate(unscaled_obs))
......@@ -75,6 +77,7 @@ def run_evaluate_episode(env, agent, scaler):
rewards.append(reward)
step += 1e-3 # increment time step feature
if done:
break
return np.sum(rewards)
......@@ -153,7 +156,6 @@ def main():
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--env',
......@@ -186,6 +188,5 @@ if __name__ == "__main__":
default='CLIP')
args = parser.parse_args()
import time
logger.set_dir('./log_dir/{}_{}'.format(args.loss_type, time.time()))
main()
......@@ -48,8 +48,9 @@ class Agent(object):
if gpu_id is None:
gpu_id = 0 if get_gpu_count() > 0 else -1
self.gpu_id = gpu_id
place = fluid.CUDAPlace(gpu_id) if gpu_id >= 0 else fluid.CPUPlace()
self.fluid_executor = fluid.Executor(place)
self.place = fluid.CUDAPlace(
gpu_id) if gpu_id >= 0 else fluid.CPUPlace()
self.fluid_executor = fluid.Executor(self.place)
self.fluid_executor.run(fluid.default_startup_program())
def build_program(self):
......
......@@ -27,13 +27,19 @@ class Network(object):
A Network is an unordered set of LayerFuncs or Networks.
"""
def sync_params_to(self, target_net, gpu_id=0, decay=0.0):
def sync_params_to(self,
target_net,
gpu_id=0,
decay=0.0,
share_vars_parallel_executor=None):
"""
Args:
target_net: Network object deepcopy from source network
gpu_id: gpu id of target_net
decay: Float. The decay to use.
target_net_weights = decay * target_net_weights + (1 - decay) * source_net_weights
share_vars_parallel_executor: if not None, will use fluid.ParallelExecutor
to run program instead of fluid.Executor
"""
args_hash_id = hashlib.md5('{}_{}_{}'.format(
id(target_net), gpu_id, decay).encode('utf-8')).hexdigest()
......@@ -59,9 +65,6 @@ class Network(object):
param_pairs = get_parameter_pairs(self, target_net)
place = fluid.CPUPlace() if gpu_id < 0 \
else fluid.CUDAPlace(gpu_id)
self._cached_fluid_executor = fluid.Executor(place)
self._cached_sync_params_program = fluid.Program()
with fluid.program_guard(self._cached_sync_params_program):
......@@ -71,7 +74,34 @@ class Network(object):
fluid.layers.assign(
decay * target_var + (1 - decay) * src_var, target_var)
self._cached_fluid_executor.run(self._cached_sync_params_program)
if share_vars_parallel_executor is None:
# use fluid.Executor
place = fluid.CPUPlace() if gpu_id < 0 \
else fluid.CUDAPlace(gpu_id)
self._cached_fluid_executor = fluid.Executor(place)
else:
# use fluid.ParallelExecutor
use_cuda = True if gpu_id >= 0 else False
# specify strategy to make ParallelExecutor run faster
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = 4
build_strategy = fluid.BuildStrategy()
build_strategy.remove_unnecessary_lock = True
with fluid.scope_guard(fluid.global_scope().new_scope()):
self._cached_fluid_executor = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=self._cached_sync_params_program,
share_vars_from=share_vars_parallel_executor,
exec_strategy=exec_strategy,
build_strategy=build_strategy,
)
if share_vars_parallel_executor is None:
self._cached_fluid_executor.run(self._cached_sync_params_program)
else:
self._cached_fluid_executor.run(fetch_list=[])
@property
def parameter_names(self):
......
......@@ -14,3 +14,4 @@
from parl.utils.utils import *
from parl.utils.gputils import *
from parl.utils.replay_memory import *
......@@ -101,7 +101,10 @@ for level in _LOGGING_LEVEL:
def _set_file(path):
global _FILE_HANDLER
if os.path.isfile(path):
os.remove(path)
try:
os.remove(path)
except OSError:
pass
hdl = logging.FileHandler(filename=path, encoding='utf-8', mode='w')
hdl.setFormatter(_Formatter(datefmt='%m-%d %H:%M:%S'))
......
......@@ -13,37 +13,74 @@
# limitations under the License.
import numpy as np
from parl.utils import logger
__all__ = ['ReplayMemory']
class ReplayMemory(object):
def __init__(self, max_size, obs_dim, act_dim):
self.max_size = max_size
self.obs_memory = np.zeros((max_size, obs_dim), dtype='float32')
self.act_memory = np.zeros((max_size, act_dim), dtype='float32')
self.reward_memory = np.zeros((max_size, ), dtype='float32')
self.next_obs_memory = np.zeros((max_size, obs_dim), dtype='float32')
self.terminal_memory = np.zeros((max_size, ), dtype='bool')
self.max_size = int(max_size)
self.obs_dim = obs_dim
self.act_dim = act_dim
self.obs = np.zeros((max_size, obs_dim), dtype='float32')
self.action = np.zeros((max_size, act_dim), dtype='float32')
self.reward = np.zeros((max_size, ), dtype='float32')
self.terminal = np.zeros((max_size, ), dtype='bool')
self.next_obs = np.zeros((max_size, obs_dim), dtype='float32')
self._curr_size = 0
self._curr_pos = 0
def sample_batch(self, batch_size):
batch_idx = np.random.choice(self._curr_size, size=batch_size)
obs = self.obs_memory[batch_idx, :]
act = self.act_memory[batch_idx, :]
reward = self.reward_memory[batch_idx]
next_obs = self.next_obs_memory[batch_idx, :]
terminal = self.terminal_memory[batch_idx]
return obs, act, reward, next_obs, terminal
# index mapping to avoid sampling saving example
batch_idx = np.random.randint(
self._curr_size - 300 - 1, size=batch_size)
batch_idx = (self._curr_pos + 300 + batch_idx) % self._curr_size
obs = self.obs[batch_idx]
reward = self.reward[batch_idx]
action = self.action[batch_idx]
next_obs = self.next_obs[batch_idx]
terminal = self.terminal[batch_idx]
return obs, action, reward, next_obs, terminal
def append(self, obs, act, reward, next_obs, terminal):
if self._curr_size < self.max_size:
self._curr_size += 1
self.obs_memory[self._curr_pos] = obs
self.act_memory[self._curr_pos] = act
self.reward_memory[self._curr_pos] = reward
self.next_obs_memory[self._curr_pos] = next_obs
self.terminal_memory[self._curr_pos] = terminal
self.obs[self._curr_pos] = obs
self.action[self._curr_pos] = act
self.reward[self._curr_pos] = reward
self.next_obs[self._curr_pos] = next_obs
self.terminal[self._curr_pos] = terminal
self._curr_pos = (self._curr_pos + 1) % self.max_size
def size(self):
return self._curr_size
def save(self, pathname):
other = np.array([self._curr_size, self._curr_pos], dtype=np.int32)
np.savez(
pathname,
obs=self.obs,
action=self.action,
reward=self.reward,
terminal=self.terminal,
next_obs=self.next_obs,
other=other)
def load(self, pathname):
data = np.load(pathname)
other = data['other']
if int(other[0]) > self.max_size:
logger.warn('loading from a bigger size rpm!')
self._curr_size = min(int(other[0]), self.max_size)
self._curr_pos = min(int(other[1]), self.max_size - 1)
self.obs[:self._curr_size] = data['obs'][:self._curr_size]
self.action[:self._curr_size] = data['action'][:self._curr_size]
self.reward[:self._curr_size] = data['reward'][:self._curr_size]
self.terminal[:self._curr_size] = data['terminal'][:self._curr_size]
self.next_obs[:self._curr_size] = data['next_obs'][:self._curr_size]
logger.info("[load rpm]memory loade from {}".format(pathname))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册