ppo.py 5.9 KB
Newer Older
H
Hongsheng Zeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import parl.layers as layers
from copy import deepcopy
from paddle import fluid
from parl.framework.algorithm_base import Algorithm

__all__ = ['PPO']


class PPO(Algorithm):
    def __init__(self, model, hyperparas):
        Algorithm.__init__(self, model, hyperparas)
        # Used to calculate probability of action in old policy
        self.old_policy_model = deepcopy(model.policy_model)

        # fetch hyper parameters
        self.act_dim = hyperparas['act_dim']
        self.policy_lr = hyperparas['policy_lr']
        self.value_lr = hyperparas['value_lr']
        if 'epsilon' in hyperparas:
            self.epsilon = hyperparas['epsilon']
        else:
            self.epsilon = 0.2  # default

    def _calc_logprob(self, actions, means, logvars):
        """ Calculate log probabilities of actions, when given means and logvars
            of normal distribution.
            The constant sqrt(2 * pi) is omitted, which will be eliminated in later.

        Args:
            actions: shape (batch_size, act_dim)
            means:   shape (batch_size, act_dim)
            logvars: shape (act_dim)

        Returns:
            logprob: shape (batch_size)
        """
        exp_item = layers.elementwise_div(
            layers.square(actions - means), layers.exp(logvars), axis=1)
        exp_item = -0.5 * layers.reduce_sum(exp_item, dim=1)

        vars_item = -0.5 * layers.reduce_sum(logvars)
        logprob = exp_item + vars_item
        return logprob

    def _calc_kl(self, means, logvars, old_means, old_logvars):
        """ Calculate KL divergence between old and new distributions
            See: https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback.E2.80.93Leibler_divergence

        Args:
            means: shape (batch_size, act_dim)
            logvars: shape (act_dim)
            old_means: shape (batch_size, act_dim)
            old_logvars: shape (act_dim)

        Returns:
            kl: shape (batch_size)
        """
        log_det_cov_old = layers.reduce_sum(old_logvars)
        log_det_cov_new = layers.reduce_sum(logvars)
        tr_old_new = layers.reduce_sum(layers.exp(old_logvars - logvars))
        kl = 0.5 * (layers.reduce_sum(
            layers.square(means - old_means) / layers.exp(logvars), dim=1) + (
                log_det_cov_new - log_det_cov_old) + tr_old_new - self.act_dim)
        return kl

    def define_predict(self, obs):
        """ Use policy model of self.model to predict means and logvars of actions
        """
        means, logvars = self.model.policy(obs)
        return means

    def define_sample(self, obs):
        """ Use policy model of self.model to sample actions
        """
        sampled_act = self.model.policy_sample(obs)
        return sampled_act

    def define_policy_learn(self, obs, actions, advantages, beta=None):
        """ Learn policy model with: 
                1. CLIP loss: Clipped Surrogate Objective 
                2. KLPEN loss: Adaptive KL Penalty Objective
            See: https://arxiv.org/pdf/1707.02286.pdf

        Args:
            obs: Tensor, (batch_size, obs_dim)
            actions: Tensor, (batch_size, act_dim)
            advantages: Tensor (batch_size, )
            beta: Tensor (1) or None
                  if None, use CLIP Loss; else, use KLPEN loss. 
        """
        old_means, old_logvars = self.old_policy_model.policy(obs)
        old_means.stop_gradient = True
        old_logvars.stop_gradient = True
        old_logprob = self._calc_logprob(actions, old_means, old_logvars)

        means, logvars = self.model.policy(obs)
        logprob = self._calc_logprob(actions, means, logvars)

        kl = self._calc_kl(means, logvars, old_means, old_logvars)
        kl = layers.reduce_mean(kl)

        if beta is None:  # Clipped Surrogate Objective
            pg_ratio = layers.exp(logprob - old_logprob)
            clipped_pg_ratio = layers.clip(pg_ratio, 1 - self.epsilon,
                                           1 + self.epsilon)
            surrogate_loss = layers.elementwise_min(
                advantages * pg_ratio, advantages * clipped_pg_ratio)
            loss = 0 - layers.reduce_mean(surrogate_loss)
        else:  # Adaptive KL Penalty Objective
            # policy gradient loss
            loss1 = 0 - layers.reduce_mean(
                advantages * layers.exp(logprob - old_logprob))
            # adaptive kl loss
            loss2 = kl * beta
            loss = loss1 + loss2
        optimizer = fluid.optimizer.AdamOptimizer(self.policy_lr)
        optimizer.minimize(loss)
        return loss, kl

    def define_value_predict(self, obs):
        """ Use value model of self.model to predict value of obs
        """
        return self.model.value(obs)

    def define_value_learn(self, obs, val):
        """ Learn value model with square error cost
        """
        predict_val = self.model.value(obs)
        loss = layers.square_error_cost(predict_val, val)
        loss = layers.reduce_mean(loss)
        optimizer = fluid.optimizer.AdamOptimizer(self.value_lr)
        optimizer.minimize(loss)
        return loss

    def sync_old_policy(self, gpu_id):
        """ Synchronize parameters of self.model.policy_model to self.old_policy_model
        """
        self.model.policy_model.sync_params_to(
            self.old_policy_model, gpu_id=gpu_id)