parallel_run.py 4.4 KB
Newer Older
L
LI Yunxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import gym
import numpy as np
import os
import time
from tqdm import tqdm

import parl
import paddle.fluid as fluid
from parl.utils import get_gpu_count
25
from parl.utils import summary, logger
L
LI Yunxiang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

from dqn import DQN  # slight changes from parl.algorithms.DQN
from atari_agent import AtariAgent
from atari_model import AtariModel
from replay_memory import ReplayMemory, Experience
from utils import get_player

MEMORY_SIZE = int(1e6)
MEMORY_WARMUP_SIZE = MEMORY_SIZE // 20
IMAGE_SIZE = (84, 84)
CONTEXT_LEN = 4
FRAME_SKIP = 4
UPDATE_FREQ = 4
GAMMA = 0.99
LEARNING_RATE = 3e-4

gpu_num = get_gpu_count()


def run_train_step(agent, rpm):
    for step in range(args.train_total_steps):
        # use the first 80% data to train
L
LI Yunxiang 已提交
48
        batch_all_obs, batch_action, batch_reward, batch_isOver = rpm.sample_batch(
L
LI Yunxiang 已提交
49
            args.batch_size * gpu_num)
L
LI Yunxiang 已提交
50 51 52 53
        batch_obs = batch_all_obs[:, :CONTEXT_LEN, :, :]
        batch_next_obs = batch_all_obs[:, 1:, :, :]
        cost = agent.learn(batch_obs, batch_action, batch_reward,
                           batch_next_obs, batch_isOver)
L
LI Yunxiang 已提交
54 55 56

        if step % 100 == 0:
            # use the last 20% data to evaluate
L
LI Yunxiang 已提交
57
            batch_all_obs, batch_action, batch_reward, batch_isOver = rpm.sample_test_batch(
L
LI Yunxiang 已提交
58
                args.batch_size)
L
LI Yunxiang 已提交
59 60 61 62
            batch_obs = batch_all_obs[:, :CONTEXT_LEN, :, :]
            batch_next_obs = batch_all_obs[:, 1:, :, :]
            eval_cost = agent.supervised_eval(batch_obs, batch_action,
                                              batch_reward, batch_next_obs,
L
LI Yunxiang 已提交
63 64 65 66 67 68 69
                                              batch_isOver)
            logger.info(
                "train step {}, train costs are {}, eval cost is {}.".format(
                    step, cost, eval_cost))


def collect_exp(env, rpm, agent):
L
LI Yunxiang 已提交
70
    obs = env.reset()
L
LI Yunxiang 已提交
71 72
    # collect data to fulfill replay memory
    for i in tqdm(range(MEMORY_SIZE)):
L
LI Yunxiang 已提交
73 74
        context = rpm.recent_obs()
        context.append(obs)
L
LI Yunxiang 已提交
75 76 77
        context = np.stack(context, axis=0)
        action = agent.sample(context)

L
LI Yunxiang 已提交
78 79 80
        next_obs, reward, isOver, _ = env.step(action)
        rpm.append(Experience(obs, action, reward, isOver))
        obs = next_obs
L
LI Yunxiang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133


def main():
    env = get_player(
        args.rom, image_size=IMAGE_SIZE, train=True, frame_skip=FRAME_SKIP)
    file_path = "memory.npz"
    rpm = ReplayMemory(
        MEMORY_SIZE,
        IMAGE_SIZE,
        CONTEXT_LEN,
        load_file=True,  # load replay memory data from file
        file_path=file_path)
    act_dim = env.action_space.n

    model = AtariModel(act_dim)
    algorithm = DQN(
        model, act_dim=act_dim, gamma=GAMMA, lr=LEARNING_RATE * gpu_num)
    agent = AtariAgent(
        algorithm, act_dim=act_dim, total_step=args.train_total_steps)
    if os.path.isfile('./model.ckpt'):
        logger.info("load model from file")
        agent.restore('./model.ckpt')

    if args.train:
        logger.info("train with memory data")
        run_train_step(agent, rpm)
        logger.info("finish training. Save the model.")
        agent.save('./model.ckpt')
    else:
        logger.info("collect experience")
        collect_exp(env, rpm, agent)
        rpm.save_memory()
        logger.info("finish collecting, save successfully")


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--rom', help='path of the rom of the atari game', required=True)
    parser.add_argument(
        '--batch_size', type=int, default=64, help='batch size for each GPU')
    parser.add_argument(
        '--train',
        action="store_true",
        help='update the value function (default: False)')
    parser.add_argument(
        '--train_total_steps',
        type=int,
        default=int(1e6),
        help='maximum environmental steps of games')

    args = parser.parse_args()
    main()