parallel_run.py 4.4 KB
Newer Older
L
LI Yunxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import gym
import numpy as np
import os
import time
from tqdm import tqdm

import parl
import paddle.fluid as fluid
from parl.utils import get_gpu_count
from parl.utils import tensorboard, logger

from dqn import DQN  # slight changes from parl.algorithms.DQN
from atari_agent import AtariAgent
from atari_model import AtariModel
from replay_memory import ReplayMemory, Experience
from utils import get_player

MEMORY_SIZE = int(1e6)
MEMORY_WARMUP_SIZE = MEMORY_SIZE // 20
IMAGE_SIZE = (84, 84)
CONTEXT_LEN = 4
FRAME_SKIP = 4
UPDATE_FREQ = 4
GAMMA = 0.99
LEARNING_RATE = 3e-4

gpu_num = get_gpu_count()


def run_train_step(agent, rpm):
    for step in range(args.train_total_steps):
        # use the first 80% data to train
        batch_all_state, batch_action, batch_reward, batch_isOver = rpm.sample_batch(
            args.batch_size * gpu_num)
        batch_state = batch_all_state[:, :CONTEXT_LEN, :, :]
        batch_next_state = batch_all_state[:, 1:, :, :]
        cost = agent.learn(batch_state, batch_action, batch_reward,
                           batch_next_state, batch_isOver)

        if step % 100 == 0:
            # use the last 20% data to evaluate
            batch_all_state, batch_action, batch_reward, batch_isOver = rpm.sample_test_batch(
                args.batch_size)
            batch_state = batch_all_state[:, :CONTEXT_LEN, :, :]
            batch_next_state = batch_all_state[:, 1:, :, :]
            eval_cost = agent.supervised_eval(batch_state, batch_action,
                                              batch_reward, batch_next_state,
                                              batch_isOver)
            logger.info(
                "train step {}, train costs are {}, eval cost is {}.".format(
                    step, cost, eval_cost))


def collect_exp(env, rpm, agent):
    state = env.reset()
    # collect data to fulfill replay memory
    for i in tqdm(range(MEMORY_SIZE)):
        context = rpm.recent_state()
        context.append(state)
        context = np.stack(context, axis=0)
        action = agent.sample(context)

        next_state, reward, isOver, _ = env.step(action)
        rpm.append(Experience(state, action, reward, isOver))
        state = next_state


def main():
    env = get_player(
        args.rom, image_size=IMAGE_SIZE, train=True, frame_skip=FRAME_SKIP)
    file_path = "memory.npz"
    rpm = ReplayMemory(
        MEMORY_SIZE,
        IMAGE_SIZE,
        CONTEXT_LEN,
        load_file=True,  # load replay memory data from file
        file_path=file_path)
    act_dim = env.action_space.n

    model = AtariModel(act_dim)
    algorithm = DQN(
        model, act_dim=act_dim, gamma=GAMMA, lr=LEARNING_RATE * gpu_num)
    agent = AtariAgent(
        algorithm, act_dim=act_dim, total_step=args.train_total_steps)
    if os.path.isfile('./model.ckpt'):
        logger.info("load model from file")
        agent.restore('./model.ckpt')

    if args.train:
        logger.info("train with memory data")
        run_train_step(agent, rpm)
        logger.info("finish training. Save the model.")
        agent.save('./model.ckpt')
    else:
        logger.info("collect experience")
        collect_exp(env, rpm, agent)
        rpm.save_memory()
        logger.info("finish collecting, save successfully")


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--rom', help='path of the rom of the atari game', required=True)
    parser.add_argument(
        '--batch_size', type=int, default=64, help='batch size for each GPU')
    parser.add_argument(
        '--train',
        action="store_true",
        help='update the value function (default: False)')
    parser.add_argument(
        '--train_total_steps',
        type=int,
        default=int(1e6),
        help='maximum environmental steps of games')

    args = parser.parse_args()
    main()