train.py 4.5 KB
Newer Older
L
LI Yunxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import gym
import numpy as np
import time
import parl
from mujoco_agent import MujocoAgent
from mujoco_model import MujocoModel
22
from parl.utils import logger, summary, action_mapping, ReplayMemory
L
LI Yunxiang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

MAX_EPISODES = 5000
ACTOR_LR = 3e-4
CRITIC_LR = 3e-4
GAMMA = 0.99
TAU = 0.005
MEMORY_SIZE = int(1e6)
WARMUP_SIZE = 1e4
BATCH_SIZE = 256
ENV_SEED = 1
EXPL_NOISE = 0.1  # Std of Gaussian exploration noise


def run_train_episode(env, agent, rpm):
    obs = env.reset()
    total_reward = 0
    steps = 0
    max_action = float(env.action_space.high[0])
    while True:
        steps += 1
        batch_obs = np.expand_dims(obs, axis=0)

        if rpm.size() < WARMUP_SIZE:
            action = env.action_space.sample()
        else:
            action = agent.predict(batch_obs.astype('float32'))
            action = np.squeeze(action)

            # Add exploration noise, and clip to [-max_action, max_action]
            action = np.clip(
                np.random.normal(action, EXPL_NOISE * max_action), -max_action,
                max_action)

        next_obs, reward, done, info = env.step(action)

        rpm.append(obs, action, reward, next_obs, done)

        if rpm.size() > WARMUP_SIZE:
            batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal = rpm.sample_batch(
                BATCH_SIZE)
            agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
                        batch_terminal)

        obs = next_obs
        total_reward += reward

        if done:
            break
    return total_reward, steps


def run_evaluate_episode(env, agent):
    obs = env.reset()
    total_reward = 0
    while True:
        batch_obs = np.expand_dims(obs, axis=0)
        action = agent.predict(batch_obs.astype('float32'))
        action = np.squeeze(action)
        action = action_mapping(action, env.action_space.low[0],
                                env.action_space.high[0])

        next_obs, reward, done, info = env.step(action)

        obs = next_obs
        total_reward += reward

        if done:
            break
    return total_reward


def main():
    env = gym.make(args.env)
    env.seed(ENV_SEED)

    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]
    max_action = float(env.action_space.high[0])

    model = MujocoModel(act_dim, max_action)
    algorithm = parl.algorithms.TD3(
        model,
        max_action=max_action,
        gamma=GAMMA,
        tau=TAU,
        actor_lr=ACTOR_LR,
        critic_lr=CRITIC_LR)
    agent = MujocoAgent(algorithm, obs_dim, act_dim)

    rpm = ReplayMemory(MEMORY_SIZE, obs_dim, act_dim)

    test_flag = 0
    total_steps = 0
    while total_steps < args.train_total_steps:
        train_reward, steps = run_train_episode(env, agent, rpm)
        total_steps += steps
        logger.info('Steps: {} Reward: {}'.format(total_steps, train_reward))
120
        summary.add_scalar('train/episode_reward', train_reward, total_steps)
L
LI Yunxiang 已提交
121 122 123 124 125 126 127

        if total_steps // args.test_every_steps >= test_flag:
            while total_steps // args.test_every_steps >= test_flag:
                test_flag += 1
            evaluate_reward = run_evaluate_episode(env, agent)
            logger.info('Steps {}, Evaluate reward: {}'.format(
                total_steps, evaluate_reward))
128 129
            summary.add_scalar('eval/episode_reward', evaluate_reward,
                               total_steps)
L
LI Yunxiang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--env', help='Mujoco environment name', default='HalfCheetah-v2')
    parser.add_argument(
        '--train_total_steps',
        type=int,
        default=int(1e7),
        help='maximum training steps')
    parser.add_argument(
        '--test_every_steps',
        type=int,
        default=int(1e4),
        help='the step interval between two consecutive evaluations')

    args = parser.parse_args()

    main()