README.md 1.2 KB
Newer Older
H
Hongsheng Zeng 已提交
1 2 3 4 5 6 7 8 9
## Reproduce DQN with PARL
Based on PARL, the DQN model of deep reinforcement learning is reproduced, and the same level of indicators of the paper is reproduced in the classic Atari game.

+ DQN in
[Human-level Control Through Deep Reinforcement Learning](http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html)

### Atari games introduction
Please see [here](https://gym.openai.com/envs/#atari) to know more about Atari game.

H
Hongsheng Zeng 已提交
10
### Benchmark result
11 12 13 14

<img src=".benchmark/DQN_Pong.png" width = "400" height ="300" alt="DQN_Pong" /> <img src=".benchmark/DQN_Breakout.png" width = "400" height ="300" alt="DQN_Breakout"/>
<br>
<img src=".benchmark/DQN_BeamRider.png" width = "400" height ="300" alt="DQN_BeamRider"/>
H
Hongsheng Zeng 已提交
15 16 17 18 19

## How to use
### Dependencies:
+ python2.7 or python3.5+
+ [paddlepaddle>=1.0.0](https://github.com/PaddlePaddle/Paddle)
H
Hongsheng Zeng 已提交
20
+ [parl](https://github.com/PaddlePaddle/PARL)
H
Hongsheng Zeng 已提交
21 22 23
+ gym
+ tqdm
+ opencv-python
H
Hongsheng Zeng 已提交
24 25
+ atari_py
+ [ale_python_interface](https://github.com/mgbellemare/Arcade-Learning-Environment)
H
Hongsheng Zeng 已提交
26 27 28 29


### Start Training:
```
H
Hongsheng Zeng 已提交
30 31
# To train a model for Pong game
python train.py --rom ./rom_files/pong.bin
H
Hongsheng Zeng 已提交
32 33
```
> To train more games, you can install more rom files from [here](https://github.com/openai/atari-py/tree/master/atari_py/atari_roms).