train.py 5.8 KB
Newer Older
L
LI Yunxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import gym
import paddle.fluid as fluid
import numpy as np
import os
import parl
from atari_agent import AtariAgent
from atari_model import AtariModel
from datetime import datetime
from replay_memory import ReplayMemory, Experience
from parl.utils import tensorboard, logger
from tqdm import tqdm
from utils import get_player

MEMORY_SIZE = 1e6
MEMORY_WARMUP_SIZE = MEMORY_SIZE // 20
IMAGE_SIZE = (84, 84)
CONTEXT_LEN = 4
FRAME_SKIP = 4
UPDATE_FREQ = 4
GAMMA = 0.99
LEARNING_RATE = 3e-4


def run_train_episode(env, agent, rpm):
    total_reward = 0
    all_cost = []
    state = env.reset()
    steps = 0
    while True:
        steps += 1
        context = rpm.recent_state()
        context.append(state)
        context = np.stack(context, axis=0)
        action = agent.sample(context)
        next_state, reward, isOver, _ = env.step(action)
        rpm.append(Experience(state, action, reward, isOver))
        # start training
        if rpm.size() > MEMORY_WARMUP_SIZE:
            if steps % UPDATE_FREQ == 0:
                batch_all_state, batch_action, batch_reward, batch_isOver = rpm.sample_batch(
                    args.batch_size)
                batch_state = batch_all_state[:, :CONTEXT_LEN, :, :]
                batch_next_state = batch_all_state[:, 1:, :, :]
                cost = agent.learn(batch_state, batch_action, batch_reward,
                                   batch_next_state, batch_isOver)
                all_cost.append(float(cost))
        total_reward += reward
        state = next_state
        if isOver:
            break
    if all_cost:
        logger.info('[Train]total_reward: {}, mean_cost: {}'.format(
            total_reward, np.mean(all_cost)))
    return total_reward, steps, np.mean(all_cost)


def run_evaluate_episode(env, agent):
    state = env.reset()
    total_reward = 0
    while True:
        action = agent.predict(state)
        state, reward, isOver, info = env.step(action)
        total_reward += reward
        if isOver:
            break
    return total_reward


def main():
    env = get_player(
        args.rom, image_size=IMAGE_SIZE, train=True, frame_skip=FRAME_SKIP)
    test_env = get_player(
        args.rom,
        image_size=IMAGE_SIZE,
        frame_skip=FRAME_SKIP,
        context_len=CONTEXT_LEN)
    rpm = ReplayMemory(MEMORY_SIZE, IMAGE_SIZE, CONTEXT_LEN)
    act_dim = env.action_space.n

    model = AtariModel(act_dim, args.algo)
    if args.algo == 'Double':
        algorithm = parl.algorithms.DDQN(model, act_dim=act_dim, gamma=GAMMA)
    elif args.algo in ['DQN', 'Dueling']:
        algorithm = parl.algorithms.DQN(model, act_dim=act_dim, gamma=GAMMA)
    agent = AtariAgent(
        algorithm,
        act_dim=act_dim,
        start_lr=LEARNING_RATE,
        total_step=args.train_total_steps,
        update_freq=UPDATE_FREQ)

    with tqdm(
            total=MEMORY_WARMUP_SIZE, desc='[Replay Memory Warm Up]') as pbar:
        while rpm.size() < MEMORY_WARMUP_SIZE:
            total_reward, steps, _ = run_train_episode(env, agent, rpm)
            pbar.update(steps)

    # train
    test_flag = 0
    pbar = tqdm(total=args.train_total_steps)
    total_steps = 0
    max_reward = None
    while total_steps < args.train_total_steps:
        # start epoch
        total_reward, steps, loss = run_train_episode(env, agent, rpm)
        total_steps += steps
        pbar.set_description('[train]exploration:{}'.format(agent.exploration))
        tensorboard.add_scalar('dqn/score', total_reward, total_steps)
        tensorboard.add_scalar('dqn/loss', loss,
                               total_steps)  # mean of total loss
        tensorboard.add_scalar('dqn/exploration', agent.exploration,
                               total_steps)
        pbar.update(steps)

        if total_steps // args.test_every_steps >= test_flag:
            while total_steps // args.test_every_steps >= test_flag:
                test_flag += 1
            pbar.write("testing")
            eval_rewards = []
            for _ in tqdm(range(3), desc='eval agent'):
                eval_reward = run_evaluate_episode(test_env, agent)
                eval_rewards.append(eval_reward)
            logger.info(
                "eval_agent done, (steps, eval_reward): ({}, {})".format(
                    total_steps, np.mean(eval_rewards)))
            eval_test = np.mean(eval_rewards)
            tensorboard.add_scalar('dqn/eval', eval_test, total_steps)

    pbar.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--rom', help='path of the rom of the atari game', required=True)
    parser.add_argument(
        '--batch_size', type=int, default=64, help='batch size for training')
    parser.add_argument(
        '--algo',
        default='DQN',
        help=
        'DQN/DDQN/Dueling, represent DQN, double DQN, and dueling DQN respectively',
    )
    parser.add_argument(
        '--train_total_steps',
        type=int,
        default=int(1e7),
        help='maximum environmental steps of games')
    parser.add_argument(
        '--test_every_steps',
        type=int,
        default=100000,
        help='the step interval between two consecutive evaluations')

    args = parser.parse_args()
    main()