rl_utils.py 2.6 KB
Newer Older
H
Hongsheng Zeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import scipy.signal

18
__all__ = ['calc_discount_sum_rewards', 'calc_gae', 'action_mapping']
H
Hongsheng Zeng 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


def calc_discount_sum_rewards(rewards, gamma):
    """ Calculate discounted forward sum of a sequence at each point. 

    Args:
        rewards (List/Tuple/np.array): rewards of (s_t, s_{t+1}, ..., s_T)
        gamma (Scalar): gamma coefficient

    Returns:
        np.array: discounted sum rewards of (s_t, s_{t+1}, ..., s_T)
    """
    return scipy.signal.lfilter([1.0], [1.0, -gamma], rewards[::-1])[::-1]


def calc_gae(rewards, values, next_value, gamma, lam):
    """ Calculate generalized advantage estimator (GAE).
    See: https://arxiv.org/pdf/1506.02438.pdf

    Args:
        rewards (List/Tuple/np.array): rewards of (s_t, s_{t+1}, ..., s_T)
        values (List/Tuple/np.array): values of (s_t, s_{t+1}, ..., s_T)
        next_value (Scalar): value of s_{T+1}
        gamma (Scalar): gamma coefficient
        lam (Scalar): lambda coefficient

    Returns:
        advantages (np.array): advantages of (s_t, s_{t+1}, ..., s_T)
    """
    # temporal differences
    tds = rewards + gamma * np.append(values[1:], next_value) - values
    advantages = calc_discount_sum_rewards(tds, gamma * lam)
    return advantages
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


def action_mapping(model_output_act, low_bound, high_bound):
    """ mapping action space [-1, 1] of model output 
        to new action space [low_bound, high_bound].

    Args:
        model_output_act: np.array, which value is in [-1, 1]
        low_bound: float, low bound of env action space
        high_bound: float, high bound of env action space

    Returns:
        action: np.array, which value is in [low_bound, high_bound]
    """
    assert np.all(((model_output_act<=1.0 + 1e-3), (model_output_act>=-1.0 - 1e-3))), \
        'the action should be in range [-1.0, 1.0]'
    assert high_bound > low_bound
    action = low_bound + (model_output_act - (-1.0)) * (
        (high_bound - low_bound) / 2.0)
    action = np.clip(action, low_bound, high_bound)
    return action