learner.py 11.5 KB
Newer Older
H
Hongsheng Zeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gym
import numpy as np
import os
import queue
import six
import time
import threading
from atari_model import AtariModel
from atari_agent import AtariAgent
from collections import defaultdict
from parl import RemoteManager
from parl.algorithms import A3C
from parl.env.atari_wrappers import wrap_deepmind
from parl.utils import logger, CSVLogger, get_gpu_count
from parl.utils.scheduler import PiecewiseScheduler
from parl.utils.time_stat import TimeStat
from parl.utils.window_stat import WindowStat
from parl.utils.rl_utils import calc_gae


class Learner(object):
    def __init__(self, config):
        self.config = config

        self.sample_data_queue = queue.Queue()
        self.batch_buffer = defaultdict(list)

        #=========== Create Agent ==========
        env = gym.make(config['env_name'])
        env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
        obs_shape = env.observation_space.shape
        act_dim = env.action_space.n

        self.config['obs_shape'] = obs_shape
        self.config['act_dim'] = act_dim

        model = AtariModel(act_dim)
        algorithm = A3C(model, hyperparas=config)
        self.agent = AtariAgent(algorithm, config, self.learn_data_provider)

        if self.agent.gpu_id >= 0:
            assert get_gpu_count() == 1, 'Only support training in single GPU,\
                    Please set environment variable: `export CUDA_VISIBLE_DEVICES=[GPU_ID_YOU_WANT_TO_USE]` .'

        else:
            cpu_num = os.environ.get('CPU_NUM')
            assert cpu_num is not None and cpu_num == '1', 'Only support training in single CPU,\
                    Please set environment variable:  `export CPU_NUM=1`.'

        #========== Learner ==========
        self.lr, self.entropy_coeff = None, None
        self.lr_scheduler = PiecewiseScheduler(config['lr_scheduler'])
        self.entropy_coeff_scheduler = PiecewiseScheduler(
            config['entropy_coeff_scheduler'])

        self.total_loss_stat = WindowStat(100)
        self.pi_loss_stat = WindowStat(100)
        self.vf_loss_stat = WindowStat(100)
        self.entropy_stat = WindowStat(100)

        self.learn_time_stat = TimeStat(100)
        self.start_time = None

        # learn thread
        self.learn_thread = threading.Thread(target=self.run_learn)
        self.learn_thread.setDaemon(True)
        self.learn_thread.start()

        self.predict_input_queue = queue.Queue()

        # predict thread
        self.predict_threads = []
        for i in six.moves.range(self.config['predict_thread_num']):
            predict_thread = threading.Thread(
                target=self.run_predict, args=(i, ))
            predict_thread.setDaemon(True)
            predict_thread.start()
            self.predict_threads.append(predict_thread)

        #========== Remote Simulator ===========
        self.remote_count = 0

        self.remote_metrics_queue = queue.Queue()
        self.sample_total_steps = 0

        self.remote_manager_thread = threading.Thread(
            target=self.run_remote_manager)
        self.remote_manager_thread.setDaemon(True)
        self.remote_manager_thread.start()

        self.csv_logger = CSVLogger(
            os.path.join(logger.get_dir(), 'result.csv'))

    def learn_data_provider(self):
        """ Data generator for fluid.layers.py_reader
        """
        B = self.config['train_batch_size']
        while True:
            sample_data = self.sample_data_queue.get()
            self.sample_total_steps += len(sample_data['obs'])
            for key in sample_data:
                self.batch_buffer[key].extend(sample_data[key])

            if len(self.batch_buffer['obs']) >= B:
                batch = {}
                for key in self.batch_buffer:
                    batch[key] = np.array(self.batch_buffer[key][:B])

                obs_np = batch['obs'].astype('float32')
                actions_np = batch['actions'].astype('int64')
                advantages_np = batch['advantages'].astype('float32')
                target_values_np = batch['target_values'].astype('float32')

                self.lr = self.lr_scheduler.step()
                self.entropy_coeff = self.entropy_coeff_scheduler.step()

                yield [
                    obs_np, actions_np, advantages_np, target_values_np,
                    self.lr, self.entropy_coeff
                ]

                for key in self.batch_buffer:
                    self.batch_buffer[key] = self.batch_buffer[key][B:]

    def run_predict(self, thread_id):
        """ predict thread
        """
        batch_ident = []
        batch_obs = []
        while True:
            ident, obs = self.predict_input_queue.get()

            batch_ident.append(ident)
            batch_obs.append(obs)
            while len(batch_obs) < self.config['max_predict_batch_size']:
                try:
                    ident, obs = self.predict_input_queue.get_nowait()
                    batch_ident.append(ident)
                    batch_obs.append(obs)
                except queue.Empty:
                    break
            if batch_obs:
                batch_obs = np.array(batch_obs)
                actions, values = self.agent.sample(batch_obs, thread_id)

                for i, ident in enumerate(batch_ident):
                    self.predict_output_queues[ident].put((actions[i],
                                                           values[i]))
                batch_ident = []
                batch_obs = []

    def run_learn(self):
        """ Learn loop
        """
        while True:
            with self.learn_time_stat:
                total_loss, pi_loss, vf_loss, entropy = self.agent.learn()

            self.total_loss_stat.add(total_loss)
            self.pi_loss_stat.add(pi_loss)
            self.vf_loss_stat.add(vf_loss)
            self.entropy_stat.add(entropy)

    def run_remote_manager(self):
        """ Accept connection of new remote simulator and start simulation.
        """
        remote_manager = RemoteManager(port=self.config['server_port'])
        logger.info("Waiting for the remote simulator's connection.")

        ident = 0
        self.predict_output_queues = []

        while True:
            remote_simulator = remote_manager.get_remote()

            self.remote_count += 1
            logger.info('Remote simulator count: {}'.format(self.remote_count))
            if self.start_time is None:
                self.start_time = time.time()

            q = queue.Queue()
            self.predict_output_queues.append(q)

            remote_thread = threading.Thread(
                target=self.run_remote_sample,
                args=(
                    remote_simulator,
                    ident,
                ))
            remote_thread.setDaemon(True)
            remote_thread.start()

            ident += 1

    def run_remote_sample(self, remote_simulator, ident):
        """ Interacts with remote simulator.
        """
        mem = defaultdict(list)

        obs = remote_simulator.reset()
        while True:
            self.predict_input_queue.put((ident, obs))
            action, value = self.predict_output_queues[ident].get()

            next_obs, reward, done = remote_simulator.step(action)

            mem['obs'].append(obs)
            mem['actions'].append(action)
            mem['rewards'].append(reward)
            mem['values'].append(value)

            if done:
                next_value = 0
                advantages = calc_gae(mem['rewards'], mem['values'],
                                      next_value, self.config['gamma'],
                                      self.config['lambda'])
                target_values = advantages + mem['values']

                self.sample_data_queue.put({
                    'obs': mem['obs'],
                    'actions': mem['actions'],
                    'advantages': advantages,
                    'target_values': target_values
                })

                mem = defaultdict(list)

                next_obs = remote_simulator.reset()

            elif len(mem['obs']) == self.config['t_max'] + 1:
                next_value = mem['values'][-1]
                advantages = calc_gae(mem['rewards'][:-1], mem['values'][:-1],
                                      next_value, self.config['gamma'],
                                      self.config['lambda'])
                target_values = advantages + mem['values'][:-1]

                self.sample_data_queue.put({
                    'obs': mem['obs'][:-1],
                    'actions': mem['actions'][:-1],
                    'advantages': advantages,
                    'target_values': target_values
                })

                for key in mem:
                    mem[key] = [mem[key][-1]]

            obs = next_obs

            if done:
                metrics = remote_simulator.get_metrics()
                if metrics:
                    self.remote_metrics_queue.put(metrics)

    def log_metrics(self):
        """ Log metrics of learner and simulators
        """
        if self.start_time is None:
            return

        metrics = []
        while True:
            try:
                metric = self.remote_metrics_queue.get_nowait()
                metrics.append(metric)
            except queue.Empty:
                break

        episode_rewards, episode_steps = [], []
        for x in metrics:
            episode_rewards.extend(x['episode_rewards'])
            episode_steps.extend(x['episode_steps'])
        max_episode_rewards, mean_episode_rewards, min_episode_rewards, \
                max_episode_steps, mean_episode_steps, min_episode_steps =\
                None, None, None, None, None, None
        if episode_rewards:
            mean_episode_rewards = np.mean(np.array(episode_rewards).flatten())
            max_episode_rewards = np.max(np.array(episode_rewards).flatten())
            min_episode_rewards = np.min(np.array(episode_rewards).flatten())

            mean_episode_steps = np.mean(np.array(episode_steps).flatten())
            max_episode_steps = np.max(np.array(episode_steps).flatten())
            min_episode_steps = np.min(np.array(episode_steps).flatten())

        metric = {
            'Sample steps': self.sample_total_steps,
            'max_episode_rewards': max_episode_rewards,
            'mean_episode_rewards': mean_episode_rewards,
            'min_episode_rewards': min_episode_rewards,
            'max_episode_steps': max_episode_steps,
            'mean_episode_steps': mean_episode_steps,
            'min_episode_steps': min_episode_steps,
            'total_loss': self.total_loss_stat.mean,
            'pi_loss': self.pi_loss_stat.mean,
            'vf_loss': self.vf_loss_stat.mean,
            'entropy': self.entropy_stat.mean,
            'learn_time_s': self.learn_time_stat.mean,
            'elapsed_time_s': int(time.time() - self.start_time),
            'lr': self.lr,
            'entropy_coeff': self.entropy_coeff,
        }

        logger.info(metric)
        self.csv_logger.log_dict(metric)

    def close(self):
        self.csv_logger.close()