cls.py 4.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid import layers
W
wangxiao1021 已提交
18
from paddlepalm.head.base_head import Head
X
xixiaoyao 已提交
19 20
import numpy as np
import os
W
wangxiao1021 已提交
21
import json
X
xixiaoyao 已提交
22 23


W
wangxiao1021 已提交
24
class Classify(Head):
X
xixiaoyao 已提交
25
    """
X
xixiaoyao 已提交
26
    classification
X
xixiaoyao 已提交
27
    """
X
xixiaoyao 已提交
28 29 30 31
    # def __init__(self, config, phase, backbone_config=None):
    def __init__(self, num_classes, input_dim, dropout_prob=0.0, \
                 param_initializer_range=0.02, phase='train'):

X
xixiaoyao 已提交
32
        self._is_training = phase == 'train'
X
xixiaoyao 已提交
33 34 35
        self._hidden_size = input_dim

        self.num_classes = num_classes
X
xixiaoyao 已提交
36
    
X
xixiaoyao 已提交
37 38 39
        self._dropout_prob = dropout_prob if phase == 'train' else 0.0
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=param_initializer_range)
X
xixiaoyao 已提交
40 41 42 43
        self._preds = []

    @property
    def inputs_attrs(self):
X
xixiaoyao 已提交
44
        reader = {}
X
xixiaoyao 已提交
45
        bb = {"sentence_embedding": [[-1, self._hidden_size], 'float32']}
X
xixiaoyao 已提交
46 47
        if self._is_training:
            reader["label_ids"] = [[-1], 'int64']
X
xixiaoyao 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        return {'reader': reader, 'backbone': bb}

    @property
    def outputs_attrs(self):
        if self._is_training:
            return {'loss': [[1], 'float32']}
        else:
            return {'logits': [[-1, self.num_classes], 'float32']}

    def build(self, inputs, scope_name=''):
        sent_emb = inputs['backbone']['sentence_embedding']
        if self._is_training:
            label_ids = inputs['reader']['label_ids']
            cls_feats = fluid.layers.dropout(
                x=sent_emb,
                dropout_prob=self._dropout_prob,
                dropout_implementation="upscale_in_train")

        logits = fluid.layers.fc(
            input=sent_emb,
            size=self.num_classes,
            param_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_w",
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_b", initializer=fluid.initializer.Constant(0.)))

        if self._is_training:
            inputs = fluid.layers.softmax(logits)
            loss = fluid.layers.cross_entropy(
                input=inputs, label=label_ids)
            loss = layers.mean(loss)
            return {"loss": loss}
        else:
W
wangxiao1021 已提交
82 83
            return {"logits":logits,
                    "probs":probs}
X
xixiaoyao 已提交
84

X
xixiaoyao 已提交
85
    def batch_postprocess(self, rt_outputs):
X
xixiaoyao 已提交
86 87
        if not self._is_training:
            logits = rt_outputs['logits']
W
wangxiao1021 已提交
88 89 90
            probs = rt_outputs['probs']
            self._preds.extend(logits.tolist())
            self._probs.extend(probs.tolist())
X
xixiaoyao 已提交
91

W
wangxiao1021 已提交
92
    def epoch_postprocess(self, post_inputs, output_dir=None):
X
xixiaoyao 已提交
93 94
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
W
wangxiao1021 已提交
95
            if output_dir is None:
X
xixiaoyao 已提交
96
                for p in self._preds:
W
wangxiao1021 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                    print(p)
            else:
                with open(os.path.join(output_dir, 'predictions.json'), 'w') as writer:
                    for p in self._preds:
                        writer.write(str(p)+'\n')
                print('Predictions saved at '+os.path.join(output_dir, 'predictions.json'))

    def epoch_postprocess(self, post_inputs, output_dir=None):
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
            if output_dir is None:
                raise ValueError('argument output_dir not found in config. Please add it into config dict/file.')
            with open(os.path.join(output_dir, 'predictions.json'), 'w') as writer:
                for i in range(len(self._preds)):
                    label = 0 if self._preds[i][0] > self._preds[i][1] else 1
                    result = {'index': i, 'label': label, 'logits': self._preds[i], 'probs': self._preds[i]}
                    result = json.dumps(result)
                    writer.write(result+'\n')
            print('Predictions saved at '+os.path.join(output_dir, 'predictions.json'))
X
xixiaoyao 已提交
116 117