cls.py 4.1 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid import layers
X
xixiaoyao 已提交
18
from paddlepalm.head.base_head import BaseHead
X
xixiaoyao 已提交
19 20 21
import numpy as np
import os

X
xixiaoyao 已提交
22 23 24 25 26 27 28 29 30 31 32
# def classify(num_classes, input_dim, dropout_prob, pred_output_dir=None, param_initializer_range=0.02, phase='train'):
# 
#     config = {
#         'num_classes': num_classes,
#         'hidden_size': input_dim,
#         'dropout_prob': dropout_prob,
#         'pred_output_dir': pred_output_dir,
#         'initializer_range': param_initializer_range
#     }
# 
#     return Task(config, phase, config)
X
xixiaoyao 已提交
33 34


X
xixiaoyao 已提交
35
class Classify(BaseHead):
X
xixiaoyao 已提交
36 37 38
    '''
    classification
    '''
X
xixiaoyao 已提交
39 40 41 42
    # def __init__(self, config, phase, backbone_config=None):
    def __init__(self, num_classes, input_dim, dropout_prob=0.0, \
                 param_initializer_range=0.02, phase='train'):

X
xixiaoyao 已提交
43
        self._is_training = phase == 'train'
X
xixiaoyao 已提交
44 45 46
        self._hidden_size = input_dim

        self.num_classes = num_classes
X
xixiaoyao 已提交
47
    
X
xixiaoyao 已提交
48 49 50
        self._dropout_prob = dropout_prob if phase == 'train' else 0.0
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=param_initializer_range)
X
xixiaoyao 已提交
51 52 53 54
        self._preds = []

    @property
    def inputs_attrs(self):
X
xixiaoyao 已提交
55
        reader = {}
X
xixiaoyao 已提交
56
        bb = {"sentence_embedding": [[-1, self._hidden_size], 'float32']}
X
xixiaoyao 已提交
57 58
        if self._is_training:
            reader["label_ids"] = [[-1], 'int64']
X
xixiaoyao 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        return {'reader': reader, 'backbone': bb}

    @property
    def outputs_attrs(self):
        if self._is_training:
            return {'loss': [[1], 'float32']}
        else:
            return {'logits': [[-1, self.num_classes], 'float32']}

    def build(self, inputs, scope_name=''):
        sent_emb = inputs['backbone']['sentence_embedding']
        if self._is_training:
            label_ids = inputs['reader']['label_ids']
            cls_feats = fluid.layers.dropout(
                x=sent_emb,
                dropout_prob=self._dropout_prob,
                dropout_implementation="upscale_in_train")

        logits = fluid.layers.fc(
            input=sent_emb,
            size=self.num_classes,
            param_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_w",
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_b", initializer=fluid.initializer.Constant(0.)))

        if self._is_training:
            inputs = fluid.layers.softmax(logits)
            loss = fluid.layers.cross_entropy(
                input=inputs, label=label_ids)
            loss = layers.mean(loss)
            return {"loss": loss}
        else:
            return {"logits":logits}

X
xixiaoyao 已提交
95
    def batch_postprocess(self, rt_outputs):
X
xixiaoyao 已提交
96 97 98 99
        if not self._is_training:
            logits = rt_outputs['logits']
            preds = np.argmax(logits, -1)
            self._preds.extend(preds.tolist())
X
xixiaoyao 已提交
100
            return preds
X
xixiaoyao 已提交
101 102 103 104 105 106 107 108 109 110 111 112

    def epoch_postprocess(self, post_inputs):
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
            if self._pred_output_path is None:
                raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
            with open(os.path.join(self._pred_output_path, 'predictions.json'), 'w') as writer:
                for p in self._preds:
                    writer.write(str(p)+'\n')
            print('Predictions saved at '+os.path.join(self._pred_output_path, 'predictions.json'))