reader4ernie.py 42.1 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import sys
import os
import json
import random
import logging
import numpy as np
import six
from io import open
from collections import namedtuple

import paddlepalm.tokenizer.ernie_tokenizer as tokenization
from paddlepalm.reader.utils.batching4ernie import pad_batch_data
from paddlepalm.reader.utils.mlm_batching import prepare_batch_data


log = logging.getLogger(__name__)

if six.PY3:
    import io
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')


def csv_reader(fd, delimiter='\t'):
    def gen():
        for i in fd:
X
xixiaoyao 已提交
48
            yield i.rstrip('\n').split(delimiter)
X
xixiaoyao 已提交
49 50 51 52 53 54 55 56 57 58 59
    return gen()


class BaseReader(object):
    def __init__(self,
                 vocab_path,
                 label_map_config=None,
                 max_seq_len=512,
                 do_lower_case=True,
                 in_tokens=False,
                 is_inference=False,
W
wangxiao1021 已提交
60
                 learning_strategy='pointwise',
X
xixiaoyao 已提交
61 62
                 random_seed=None,
                 tokenizer="FullTokenizer",
W
wangxiao1021 已提交
63
                 phase='train',
X
xixiaoyao 已提交
64 65 66 67 68 69 70 71 72 73 74
                 is_classify=True,
                 is_regression=False,
                 for_cn=True,
                 task_id=0):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
X
xixiaoyao 已提交
75
        self.mask_id = self.vocab["[MASK]"]
X
xixiaoyao 已提交
76
        self.in_tokens = in_tokens
W
wangxiao1021 已提交
77
        self.phase = phase
X
xixiaoyao 已提交
78
        self.is_inference = is_inference
W
wangxiao1021 已提交
79
        self.learning_strategy = learning_strategy
X
xixiaoyao 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        self.for_cn = for_cn
        self.task_id = task_id

        np.random.seed(random_seed)

        self.is_classify = is_classify
        self.is_regression = is_regression
        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        self.examples = {}

        if label_map_config:
            with open(label_map_config, encoding='utf8') as f: 
                self.label_map = json.load(f)
        else:
            self.label_map = None

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, 'r', encoding='utf8') as f:
            reader = csv_reader(f)
            headers = next(reader)
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                example = Example(*line)
                examples.append(example)
            return examples

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()
W
wangxiao1021 已提交
131
    
X
xixiaoyao 已提交
132 133 134 135 136 137 138 139

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        has_text_b = False
W
wangxiao1021 已提交
140
        has_text_b_neg = False
X
xixiaoyao 已提交
141 142
        if isinstance(example, dict):
            has_text_b = "text_b" in example.keys()
W
wangxiao1021 已提交
143
            has_text_b_neg = "text_b_neg" in example.keys()
X
xixiaoyao 已提交
144 145
        else:
            has_text_b = "text_b" in example._fields
W
wangxiao1021 已提交
146
            has_text_b_neg = "text_b_neg" in example._fields
X
xixiaoyao 已提交
147 148 149 150 151 152 153 154

        if has_text_b:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
W
wangxiao1021 已提交
155 156 157 158 159 160
           
            if has_text_b_neg and self.phase == 'train':
                tokens_a_neg = tokenizer.tokenize(text_a)
                text_b_neg = tokenization.convert_to_unicode(example.text_b_neg)
                tokens_b_neg = tokenizer.tokenize(text_b_neg)
                self._truncate_seq_pair(tokens_a_neg, tokens_b_neg, max_seq_length - 3)
X
xixiaoyao 已提交
161 162 163 164
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]
W
wangxiao1021 已提交
165
        
X
xixiaoyao 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
W
wangxiao1021 已提交
188
        
X
xixiaoyao 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

W
wangxiao1021 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

        if has_text_b_neg and self.phase == 'train':
            tokens_neg = []
            text_type_ids_neg = []
            tokens_neg.append("[CLS]")
            text_type_ids_neg.append(0)
            for token in tokens_a_neg:
                tokens_neg.append(token)
                text_type_ids_neg.append(0)
            tokens_neg.append("[SEP]")
            text_type_ids_neg.append(0)

            if tokens_b_neg:
                for token in tokens_b_neg:
                    tokens_neg.append(token)
                    text_type_ids_neg.append(1)
                tokens_neg.append("[SEP]")
                text_type_ids_neg.append(1)

            token_ids_neg = tokenizer.convert_tokens_to_ids(tokens_neg)
            position_ids_neg = list(range(len(token_ids_neg)))


X
xixiaoyao 已提交
229 230 231 232 233 234 235 236 237 238 239
        if self.is_inference:
            Record = namedtuple('Record',
                                ['token_ids', 'text_type_ids', 'position_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids)
        else:
            qid = None
            if "qid" in example._fields:
                qid = example.qid
W
wangxiao1021 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            if self.learning_strategy == 'pairwise' and self.phase == 'train':
                Record = namedtuple('Record',
                                    ['token_ids', 'text_type_ids', 'position_ids', 'token_ids_neg', 'text_type_ids_neg', 'position_ids_neg', 'qid'])
                
                record = Record(
                    token_ids=token_ids,
                    text_type_ids=text_type_ids,
                    position_ids=position_ids,
                    token_ids_neg=token_ids_neg,
                    text_type_ids_neg=text_type_ids_neg,
                    position_ids_neg=position_ids_neg,
                    qid=qid)
 
            else:
                if self.label_map:
                    label_id = self.label_map[example.label]
                else:
                    label_id = example.label

                Record = namedtuple('Record', [
                    'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'
                ])

                record = Record(
                    token_ids=token_ids,
                    text_type_ids=text_type_ids,
                    position_ids=position_ids,
                    label_id=label_id,
                    qid=qid)
X
xixiaoyao 已提交
269 270 271 272 273
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
X
xixiaoyao 已提交
274 275
        if len(examples) < batch_size:
            raise Exception('CLS dataset contains too few samples. Expect more than '+str(batch_size))
X
xixiaoyao 已提交
276 277 278 279
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
W
wangxiao1021 已提交
280
                                                     self.tokenizer)                                       
X
xixiaoyao 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if phase == 'pred' and batch_records:
            yield self._pad_batch_records(batch_records)

    def get_num_examples(self, input_file=None, phase=None):
        if self.examples is not None:
            if phase is None:
                phase = 'all'
            return len(self.examples[phase])
        else:
            assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called."
            examples = self._read_tsv(input_file)
            return len(examples)

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):
        examples = self._read_tsv(input_file)
        if phase is None:
            phase = 'all'
        self.examples[phase] = examples

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if shuffle:
                    np.random.shuffle(examples)

                for batch_data in self._prepare_batch_data(
                        examples, batch_size, phase=phase):
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
W
wangxiao1021 已提交
337
                        
X
xixiaoyao 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                        all_dev_batches = []
        def f():
            for i in wrapper():
                yield i

        # def f():
        #     try:
        #         for i in wrapper():
        #             yield i
        #     except Exception as e:
        #         import traceback
        #         traceback.print_exc()

        return f


class MaskLMReader(BaseReader):

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None 

        has_text_b = False
        if isinstance(example, dict):
            has_text_b = "text_b" in example.keys()
        else:
            has_text_b = "text_b" in example._fields

        if has_text_b:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

X
xixiaoyao 已提交
421
        return [token_ids, text_type_ids, position_ids]
X
xixiaoyao 已提交
422

X
xixiaoyao 已提交
423 424 425
    def batch_reader(self, examples, batch_size, in_tokens, phase):
        batch = []
        total_token_num = 0
X
xixiaoyao 已提交
426 427
        if len(examples) < batch_size:
            raise Exception('MaskLM dataset contains too few samples. Expect more than '+str(batch_size))
X
xixiaoyao 已提交
428
        for e in examples:
X
xixiaoyao 已提交
429 430
            parsed_line = self._convert_example_to_record(e, self.max_seq_len, self.tokenizer)
            to_append = len(batch) < batch_size
X
xixiaoyao 已提交
431 432
            if to_append:
                batch.append(parsed_line)
X
xixiaoyao 已提交
433
                total_token_num += len(parsed_line[0])
X
xixiaoyao 已提交
434 435
            else:
                yield batch, total_token_num
X
xixiaoyao 已提交
436 437
                batch = [parsed_line]
                total_token_num = len(parsed_line[0])
X
xixiaoyao 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

        if len(batch) > 0 and phase == 'pred':
            yield batch, total_token_num

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):
        examples = self._read_tsv(input_file)
        if phase is None:
            phase = 'all'
        self.examples[phase] = examples

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if shuffle:
                    np.random.shuffle(examples)

                all_dev_batches = []
X
xixiaoyao 已提交
468 469
                for batch_data, num_tokens in self.batch_reader(examples, 
                                                    batch_size, self.in_tokens, phase=phase):
X
xixiaoyao 已提交
470 471
                    batch_data = prepare_batch_data(
                        batch_data,
X
xixiaoyao 已提交
472 473
                        num_tokens,
                        voc_size=len(self.vocab),
X
xixiaoyao 已提交
474 475 476 477
                        pad_id=self.pad_id,
                        cls_id=self.cls_id,
                        sep_id=self.sep_id,
                        mask_id=self.mask_id,
X
xixiaoyao 已提交
478
                        # max_len=self.max_seq_len, # 注意,如果padding到最大长度,会导致mask_pos与实际位置不对应。因为mask pos是基于batch内最大长度来计算的。
X
xixiaoyao 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
                        return_input_mask=True,
                        return_max_len=False,
                        return_num_token=False)

                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
                        all_dev_batches = []

        return wrapper


class ClassifyReader(BaseReader):
    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, 'r', encoding='utf8') as f:
            reader = csv_reader(f)
            headers = next(reader)
            text_indices = [
                index for index, h in enumerate(headers) if h != "label"
            ]
            Example = namedtuple('Example', headers)
            examples = []
            for line in reader:
                for index, text in enumerate(line):
                    if index in text_indices:
                        if self.for_cn:
                            line[index] = text.replace(' ', '')
                        else:
                            line[index] = text
                example = Example(*line)
                examples.append(example)
            return examples

    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
W
wangxiao1021 已提交
519 520 521 522
        if self.phase=='train' and self.learning_strategy == 'pairwise':
            batch_token_ids_neg = [record.token_ids_neg for record in batch_records]
            batch_text_type_ids_neg = [record.text_type_ids_neg for record in batch_records]
            batch_position_ids_neg = [record.position_ids_neg for record in batch_records]
X
xixiaoyao 已提交
523 524

        if not self.is_inference:
W
wangxiao1021 已提交
525 526 527 528 529 530 531 532
            if not self.learning_strategy == 'pairwise':
                batch_labels = [record.label_id for record in batch_records]
                if self.is_classify:
                    batch_labels = np.array(batch_labels).astype("int64").reshape(
                        [-1])
                elif self.is_regression:
                    batch_labels = np.array(batch_labels).astype("float32").reshape(
                        [-1])
X
xixiaoyao 已提交
533 534 535 536

            if batch_records[0].qid:
                batch_qids = [record.qid for record in batch_records]
                batch_qids = np.array(batch_qids).astype("int64").reshape(
W
wangxiao 已提交
537
                    [-1])
X
xixiaoyao 已提交
538
            else:
W
wangxiao 已提交
539
                batch_qids = np.array([]).astype("int64").reshape([-1])
X
xixiaoyao 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask
        ]
W
wangxiao1021 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

        if self.phase=='train':
            if self.learning_strategy == 'pairwise':
                padded_token_ids_neg, input_mask_neg = pad_batch_data(
                    batch_token_ids_neg, pad_idx=self.pad_id, return_input_mask=True)
                padded_text_type_ids_neg = pad_batch_data(
                    batch_text_type_ids_neg, pad_idx=self.pad_id)
                padded_position_ids_neg = pad_batch_data(
                    batch_position_ids_neg, pad_idx=self.pad_id)
                padded_task_ids_neg = np.ones_like(
                    padded_token_ids_neg, dtype="int64") * self.task_id

                return_list += [padded_token_ids_neg, padded_text_type_ids_neg, \
                                padded_position_ids_neg, padded_task_ids_neg, input_mask_neg]

            elif self.learning_strategy == 'pointwise':
                return_list += [batch_labels]
X
xixiaoyao 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

        return return_list


class SequenceLabelReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids, pad_idx=len(self.label_map) - 1)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
        assert len(tokens) == len(labels)
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            if len(sub_token) == 1:
                ret_labels.append(label)
                continue

            if label == "O" or label.startswith("I-"):
                ret_labels.extend([label] * len(sub_token))
            elif label.startswith("B-"):
                i_label = "I-" + label[2:]
                ret_labels.extend([label] + [i_label] * (len(sub_token) - 1))
            elif label.startswith("S-"):
                b_laebl = "B-" + label[2:]
                e_label = "E-" + label[2:]
                i_label = "I-" + label[2:]
                ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label])
            elif label.startswith("E-"):
                i_label = "I-" + label[2:]
                ret_labels.extend([i_label] * (len(sub_token) - 1) + [label])

        assert len(ret_tokens) == len(ret_labels)
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        label_ids = [no_entity_id] + [
            self.label_map[label] for label in labels
        ] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


class ExtractEmbeddingReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, seq_lens
        ]

        return return_list


class MRCReader(BaseReader):
    def __init__(self,
                 vocab_path,
                 label_map_config=None,
                 max_seq_len=512,
                 do_lower_case=True,
                 in_tokens=False,
                 random_seed=None,
                 tokenizer="FullTokenizer",
                 is_classify=True,
                 is_regression=False,
                 for_cn=True,
                 task_id=0,
                 doc_stride=128,
X
xixiaoyao 已提交
704 705
                 max_query_length=64,
                 remove_noanswer=True):
X
xixiaoyao 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.in_tokens = in_tokens
        self.for_cn = for_cn
        self.task_id = task_id
        self.doc_stride = doc_stride
        self.max_query_length = max_query_length
        self.examples = {}
        self.features = {}
X
xixiaoyao 已提交
720
        self.remove_noanswer = remove_noanswer
X
xixiaoyao 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

        if random_seed is not None:
            np.random.seed(random_seed)

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        self.Example = namedtuple('Example',
                ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text',
                'start_position', 'end_position'])
        self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index",
                "tokens", "token_to_orig_map", "token_is_max_context",
                "token_ids", "position_ids", "text_type_ids",
                "start_position", "end_position"])
        self.DocSpan = namedtuple("DocSpan", ["start", "length"])

    def _read_json(self, input_file, is_training):
        examples = []
        with open(input_file, "r", encoding='utf8') as f:
            input_data = json.load(f)["data"]
            for entry in input_data:
                for paragraph in entry["paragraphs"]:
                    paragraph_text = paragraph["context"]
                    for qa in paragraph["qas"]:
                        qas_id = qa["id"]
                        question_text = qa["question"]
                        start_pos = None
                        end_pos = None
                        orig_answer_text = None

                        if is_training:
                            if len(qa["answers"]) != 1:
                                raise ValueError(
                                    "For training, each question should have exactly 1 answer."
                                )

                            answer = qa["answers"][0]
                            orig_answer_text = answer["text"]
                            answer_offset = answer["answer_start"]
                            answer_length = len(orig_answer_text)
                            doc_tokens = [
                                paragraph_text[:answer_offset],
                                paragraph_text[answer_offset:answer_offset +
                                               answer_length],
                                paragraph_text[answer_offset + answer_length:]
                            ]

                            start_pos = 1
                            end_pos = 1

                            actual_text = " ".join(doc_tokens[start_pos:(end_pos
                                                                         + 1)])
                            if actual_text.find(orig_answer_text) == -1:
                                log.info("Could not find answer: '%s' vs. '%s'",
                                      actual_text, orig_answer_text)
                                continue
                        else:
                            doc_tokens = tokenization.tokenize_chinese_chars(
                                paragraph_text)

                        example = self.Example(
                            qas_id=qas_id,
                            question_text=question_text,
                            doc_tokens=doc_tokens,
                            orig_answer_text=orig_answer_text,
                            start_position=start_pos,
                            end_position=end_pos)
                        examples.append(example)

        return examples

    def _improve_answer_span(self, doc_tokens, input_start, input_end,
                             tokenizer, orig_answer_text):
        tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

        for new_start in range(input_start, input_end + 1):
            for new_end in range(input_end, new_start - 1, -1):
                text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
                if text_span == tok_answer_text:
                    return (new_start, new_end)

        return (input_start, input_end)

    def _check_is_max_context(self, doc_spans, cur_span_index, position):
        best_score = None
        best_span_index = None
        for (span_index, doc_span) in enumerate(doc_spans):
            end = doc_span.start + doc_span.length - 1
            if position < doc_span.start:
                continue
            if position > end:
                continue
            num_left_context = position - doc_span.start
            num_right_context = end - position
            score = min(num_left_context,
                        num_right_context) + 0.01 * doc_span.length
            if best_score is None or score > best_score:
                best_score = score
                best_span_index = span_index

        return cur_span_index == best_span_index

    def _convert_example_to_feature(self, examples, max_seq_length, tokenizer,
X
xixiaoyao 已提交
825
                                    is_training, remove_noanswer=True):
X
xixiaoyao 已提交
826 827 828
        features = []
        unique_id = 1000000000

X
xixiaoyao 已提交
829
        print('converting examples to features...')
X
xixiaoyao 已提交
830
        for (example_index, example) in enumerate(examples):
X
xixiaoyao 已提交
831
            if example_index % 1000 == 0:
X
xixiaoyao 已提交
832
                print('processing {}th example...'.format(example_index))
X
xixiaoyao 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
            query_tokens = tokenizer.tokenize(example.question_text)
            if len(query_tokens) > self.max_query_length:
                query_tokens = query_tokens[0:self.max_query_length]
            tok_to_orig_index = []
            orig_to_tok_index = []
            all_doc_tokens = []
            for (i, token) in enumerate(example.doc_tokens):
                orig_to_tok_index.append(len(all_doc_tokens))
                sub_tokens = tokenizer.tokenize(token)
                for sub_token in sub_tokens:
                    tok_to_orig_index.append(i)
                    all_doc_tokens.append(sub_token)

            tok_start_position = None
            tok_end_position = None
            if is_training:
                tok_start_position = orig_to_tok_index[example.start_position]
                if example.end_position < len(example.doc_tokens) - 1:
                    tok_end_position = orig_to_tok_index[example.end_position +
                                                         1] - 1
                else:
                    tok_end_position = len(all_doc_tokens) - 1
                (tok_start_position,
                 tok_end_position) = self._improve_answer_span(
                     all_doc_tokens, tok_start_position, tok_end_position,
                     tokenizer, example.orig_answer_text)

            max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
            doc_spans = []
            start_offset = 0
            while start_offset < len(all_doc_tokens):
                length = len(all_doc_tokens) - start_offset
                if length > max_tokens_for_doc:
                    length = max_tokens_for_doc
                doc_spans.append(self.DocSpan(start=start_offset, length=length))
                if start_offset + length == len(all_doc_tokens):
                    break
                start_offset += min(length, self.doc_stride)

            for (doc_span_index, doc_span) in enumerate(doc_spans):
                tokens = []
                token_to_orig_map = {}
                token_is_max_context = {}
                text_type_ids = []
                tokens.append("[CLS]")
                text_type_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    text_type_ids.append(0)
                tokens.append("[SEP]")
                text_type_ids.append(0)

                for i in range(doc_span.length):
                    split_token_index = doc_span.start + i
                    token_to_orig_map[len(tokens)] = tok_to_orig_index[
                        split_token_index]

                    is_max_context = self._check_is_max_context(
                        doc_spans, doc_span_index, split_token_index)
                    token_is_max_context[len(tokens)] = is_max_context
                    tokens.append(all_doc_tokens[split_token_index])
                    text_type_ids.append(1)
                tokens.append("[SEP]")
                text_type_ids.append(1)

                token_ids = tokenizer.convert_tokens_to_ids(tokens)
                position_ids = list(range(len(token_ids)))
                start_position = None
                end_position = None
                if is_training:
                    doc_start = doc_span.start
                    doc_end = doc_span.start + doc_span.length - 1
                    out_of_span = False
                    if not (tok_start_position >= doc_start and
                            tok_end_position <= doc_end):
                        out_of_span = True
                    if out_of_span:
                        start_position = 0
                        end_position = 0
X
xixiaoyao 已提交
912 913
                        if remove_noanswer:
                            continue
X
xixiaoyao 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                    else:
                        doc_offset = len(query_tokens) + 2
                        start_position = tok_start_position - doc_start + doc_offset
                        end_position = tok_end_position - doc_start + doc_offset

                feature = self.Feature(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    token_ids=token_ids,
                    position_ids=position_ids,
                    text_type_ids=text_type_ids,
                    start_position=start_position,
                    end_position=end_position)
                features.append(feature)

                unique_id += 1

        return features

    def _prepare_batch_data(self, records, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0

X
xixiaoyao 已提交
941 942 943
        if len(records) < batch_size:
            raise Exception('mrc dataset contains too few samples. Expect more than '+str(batch_size))

X
xixiaoyao 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        for index, record in enumerate(records):
            if phase == "train":
                self.current_example = index
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records, phase == "train")
                batch_records, max_len = [record], len(record.token_ids)

        if phase == 'pred' and batch_records:
            yield self._pad_batch_records(batch_records, phase == "train")

    def _pad_batch_records(self, batch_records, is_training):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        if is_training:
            batch_start_position = [
                record.start_position for record in batch_records
            ]
            batch_end_position = [
                record.end_position for record in batch_records
            ]
            batch_start_position = np.array(batch_start_position).astype(
W
wangxiao 已提交
973
                "int64").reshape([-1])
X
xixiaoyao 已提交
974
            batch_end_position = np.array(batch_end_position).astype(
W
wangxiao 已提交
975
                "int64").reshape([-1])
X
xixiaoyao 已提交
976 977 978 979

        else:
            batch_size = len(batch_token_ids)
            batch_start_position = np.zeros(
W
wangxiao 已提交
980 981
                shape=[batch_size], dtype="int64")
            batch_end_position = np.zeros(shape=[batch_size], dtype="int64")
X
xixiaoyao 已提交
982 983 984

        batch_unique_ids = [record.unique_id for record in batch_records]
        batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape(
W
wangxiao 已提交
985
            [-1])
X
xixiaoyao 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, batch_start_position,
            batch_end_position, batch_unique_ids
        ]

        return return_list

    def get_num_examples(self, phase):
        return len(self.features[phase])

    def get_features(self, phase):
        return self.features[phase]

    def get_examples(self, phase):
        return self.examples[phase]

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):

        examples = self.examples.get(phase, None)
        features = self.features.get(phase, None)
        if not examples:
            examples = self._read_json(input_file, phase == "train")
            features = self._convert_example_to_feature(
X
xixiaoyao 已提交
1027
                examples, self.max_seq_len, self.tokenizer, phase == "train", remove_noanswer=self.remove_noanswer)
X
xixiaoyao 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            self.examples[phase] = examples
            self.features[phase] = features

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if phase == "train" and shuffle:
                    np.random.shuffle(features)

                for batch_data in self._prepare_batch_data(
                        features, batch_size, phase=phase):
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
                        all_dev_batches = []

        return wrapper


if __name__ == '__main__':
    pass