reader4ernie.py 39.0 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import sys
import os
import json
import random
import logging
import numpy as np
import six
from io import open
from collections import namedtuple

import paddlepalm.tokenizer.ernie_tokenizer as tokenization
from paddlepalm.reader.utils.batching4ernie import pad_batch_data
from paddlepalm.reader.utils.mlm_batching import prepare_batch_data


log = logging.getLogger(__name__)

if six.PY3:
    import io
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')


def csv_reader(fd, delimiter='\t'):
    def gen():
        for i in fd:
X
xixiaoyao 已提交
48
            yield i.rstrip('\n').split(delimiter)
X
xixiaoyao 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    return gen()


class BaseReader(object):
    def __init__(self,
                 vocab_path,
                 label_map_config=None,
                 max_seq_len=512,
                 do_lower_case=True,
                 in_tokens=False,
                 is_inference=False,
                 random_seed=None,
                 tokenizer="FullTokenizer",
                 is_classify=True,
                 is_regression=False,
                 for_cn=True,
                 task_id=0):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
X
xixiaoyao 已提交
73
        self.mask_id = self.vocab["[MASK]"]
X
xixiaoyao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        self.in_tokens = in_tokens
        self.is_inference = is_inference
        self.for_cn = for_cn
        self.task_id = task_id

        np.random.seed(random_seed)

        self.is_classify = is_classify
        self.is_regression = is_regression
        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        self.examples = {}

        if label_map_config:
            with open(label_map_config, encoding='utf8') as f: 
                self.label_map = json.load(f)
        else:
            self.label_map = None

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, 'r', encoding='utf8') as f:
            reader = csv_reader(f)
            headers = next(reader)
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                example = Example(*line)
                examples.append(example)
            return examples

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None

        has_text_b = False
        if isinstance(example, dict):
            has_text_b = "text_b" in example.keys()
        else:
            has_text_b = "text_b" in example._fields

        if has_text_b:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.is_inference:
            Record = namedtuple('Record',
                                ['token_ids', 'text_type_ids', 'position_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids)
        else:
            if self.label_map:
                label_id = self.label_map[example.label]
            else:
                label_id = example.label

            Record = namedtuple('Record', [
                'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'
            ])

            qid = None
            if "qid" in example._fields:
                qid = example.qid

            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids,
                label_id=label_id,
                qid=qid)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
X
xixiaoyao 已提交
225 226
        if len(examples) < batch_size:
            raise Exception('CLS dataset contains too few samples. Expect more than '+str(batch_size))
X
xixiaoyao 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if phase == 'pred' and batch_records:
            yield self._pad_batch_records(batch_records)

    def get_num_examples(self, input_file=None, phase=None):
        if self.examples is not None:
            if phase is None:
                phase = 'all'
            return len(self.examples[phase])
        else:
            assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called."
            examples = self._read_tsv(input_file)
            return len(examples)

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):
        examples = self._read_tsv(input_file)
        if phase is None:
            phase = 'all'
        self.examples[phase] = examples

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if shuffle:
                    np.random.shuffle(examples)

                for batch_data in self._prepare_batch_data(
                        examples, batch_size, phase=phase):
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
                        all_dev_batches = []
        def f():
            for i in wrapper():
                yield i

        # def f():
        #     try:
        #         for i in wrapper():
        #             yield i
        #     except Exception as e:
        #         import traceback
        #         traceback.print_exc()

        return f


class MaskLMReader(BaseReader):

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None 

        has_text_b = False
        if isinstance(example, dict):
            has_text_b = "text_b" in example.keys()
        else:
            has_text_b = "text_b" in example._fields

        if has_text_b:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

X
xixiaoyao 已提交
371 372 373 374 375 376
        # Record = namedtuple('Record',
        #                     ['token_ids', 'text_type_ids', 'position_ids'])
        # record = Record(
        #     token_ids=token_ids,
        #     text_type_ids=text_type_ids,
        #     position_ids=position_ids)
X
xixiaoyao 已提交
377

X
xixiaoyao 已提交
378
        return [token_ids, text_type_ids, position_ids]
X
xixiaoyao 已提交
379

X
xixiaoyao 已提交
380 381 382
    def batch_reader(self, examples, batch_size, in_tokens, phase):
        batch = []
        total_token_num = 0
X
xixiaoyao 已提交
383 384
        if len(examples) < batch_size:
            raise Exception('MaskLM dataset contains too few samples. Expect more than '+str(batch_size))
X
xixiaoyao 已提交
385
        for e in examples:
X
xixiaoyao 已提交
386 387
            parsed_line = self._convert_example_to_record(e, self.max_seq_len, self.tokenizer)
            to_append = len(batch) < batch_size
X
xixiaoyao 已提交
388 389
            if to_append:
                batch.append(parsed_line)
X
xixiaoyao 已提交
390
                total_token_num += len(parsed_line[0])
X
xixiaoyao 已提交
391 392
            else:
                yield batch, total_token_num
X
xixiaoyao 已提交
393 394
                batch = [parsed_line]
                total_token_num = len(parsed_line[0])
X
xixiaoyao 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

        if len(batch) > 0 and phase == 'pred':
            yield batch, total_token_num

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):
        examples = self._read_tsv(input_file)
        if phase is None:
            phase = 'all'
        self.examples[phase] = examples

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if shuffle:
                    np.random.shuffle(examples)

                all_dev_batches = []
X
xixiaoyao 已提交
425 426
                for batch_data, num_tokens in self.batch_reader(examples, 
                                                    batch_size, self.in_tokens, phase=phase):
X
xixiaoyao 已提交
427 428
                    batch_data = prepare_batch_data(
                        batch_data,
X
xixiaoyao 已提交
429 430
                        num_tokens,
                        voc_size=len(self.vocab),
X
xixiaoyao 已提交
431 432 433 434
                        pad_id=self.pad_id,
                        cls_id=self.cls_id,
                        sep_id=self.sep_id,
                        mask_id=self.mask_id,
X
xixiaoyao 已提交
435
                        # max_len=self.max_seq_len, # 注意,如果padding到最大长度,会导致mask_pos与实际位置不对应。因为mask pos是基于batch内最大长度来计算的。
X
xixiaoyao 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                        return_input_mask=True,
                        return_max_len=False,
                        return_num_token=False)

                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
                        all_dev_batches = []

        return wrapper


class ClassifyReader(BaseReader):
    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, 'r', encoding='utf8') as f:
            reader = csv_reader(f)
            headers = next(reader)
            text_indices = [
                index for index, h in enumerate(headers) if h != "label"
            ]
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                for index, text in enumerate(line):
                    if index in text_indices:
                        if self.for_cn:
                            line[index] = text.replace(' ', '')
                        else:
                            line[index] = text
                example = Example(*line)
                examples.append(example)
            return examples

    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        if not self.is_inference:
            batch_labels = [record.label_id for record in batch_records]
            if self.is_classify:
                batch_labels = np.array(batch_labels).astype("int64").reshape(
W
wangxiao 已提交
482
                    [-1])
X
xixiaoyao 已提交
483 484
            elif self.is_regression:
                batch_labels = np.array(batch_labels).astype("float32").reshape(
W
wangxiao 已提交
485
                    [-1])
X
xixiaoyao 已提交
486 487 488 489

            if batch_records[0].qid:
                batch_qids = [record.qid for record in batch_records]
                batch_qids = np.array(batch_qids).astype("int64").reshape(
W
wangxiao 已提交
490
                    [-1])
X
xixiaoyao 已提交
491
            else:
W
wangxiao 已提交
492
                batch_qids = np.array([]).astype("int64").reshape([-1])
X
xixiaoyao 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask
        ]
        if not self.is_inference:
            return_list += [batch_labels, batch_qids]

        return return_list


class SequenceLabelReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids, pad_idx=len(self.label_map) - 1)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
        assert len(tokens) == len(labels)
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            if len(sub_token) == 1:
                ret_labels.append(label)
                continue

            if label == "O" or label.startswith("I-"):
                ret_labels.extend([label] * len(sub_token))
            elif label.startswith("B-"):
                i_label = "I-" + label[2:]
                ret_labels.extend([label] + [i_label] * (len(sub_token) - 1))
            elif label.startswith("S-"):
                b_laebl = "B-" + label[2:]
                e_label = "E-" + label[2:]
                i_label = "I-" + label[2:]
                ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label])
            elif label.startswith("E-"):
                i_label = "I-" + label[2:]
                ret_labels.extend([i_label] * (len(sub_token) - 1) + [label])

        assert len(ret_tokens) == len(ret_labels)
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        label_ids = [no_entity_id] + [
            self.label_map[label] for label in labels
        ] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


class ExtractEmbeddingReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, seq_lens
        ]

        return return_list


class MRCReader(BaseReader):
    def __init__(self,
                 vocab_path,
                 label_map_config=None,
                 max_seq_len=512,
                 do_lower_case=True,
                 in_tokens=False,
                 random_seed=None,
                 tokenizer="FullTokenizer",
                 is_classify=True,
                 is_regression=False,
                 for_cn=True,
                 task_id=0,
                 doc_stride=128,
X
xixiaoyao 已提交
642 643
                 max_query_length=64,
                 remove_noanswer=True):
X
xixiaoyao 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.in_tokens = in_tokens
        self.for_cn = for_cn
        self.task_id = task_id
        self.doc_stride = doc_stride
        self.max_query_length = max_query_length
        self.examples = {}
        self.features = {}
X
xixiaoyao 已提交
658
        self.remove_noanswer = remove_noanswer
X
xixiaoyao 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

        if random_seed is not None:
            np.random.seed(random_seed)

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        self.Example = namedtuple('Example',
                ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text',
                'start_position', 'end_position'])
        self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index",
                "tokens", "token_to_orig_map", "token_is_max_context",
                "token_ids", "position_ids", "text_type_ids",
                "start_position", "end_position"])
        self.DocSpan = namedtuple("DocSpan", ["start", "length"])

    def _read_json(self, input_file, is_training):
        examples = []
        with open(input_file, "r", encoding='utf8') as f:
            input_data = json.load(f)["data"]
            for entry in input_data:
                for paragraph in entry["paragraphs"]:
                    paragraph_text = paragraph["context"]
                    for qa in paragraph["qas"]:
                        qas_id = qa["id"]
                        question_text = qa["question"]
                        start_pos = None
                        end_pos = None
                        orig_answer_text = None

                        if is_training:
                            if len(qa["answers"]) != 1:
                                raise ValueError(
                                    "For training, each question should have exactly 1 answer."
                                )

                            answer = qa["answers"][0]
                            orig_answer_text = answer["text"]
                            answer_offset = answer["answer_start"]
                            answer_length = len(orig_answer_text)
                            doc_tokens = [
                                paragraph_text[:answer_offset],
                                paragraph_text[answer_offset:answer_offset +
                                               answer_length],
                                paragraph_text[answer_offset + answer_length:]
                            ]

                            start_pos = 1
                            end_pos = 1

                            actual_text = " ".join(doc_tokens[start_pos:(end_pos
                                                                         + 1)])
                            if actual_text.find(orig_answer_text) == -1:
                                log.info("Could not find answer: '%s' vs. '%s'",
                                      actual_text, orig_answer_text)
                                continue
                        else:
                            doc_tokens = tokenization.tokenize_chinese_chars(
                                paragraph_text)

                        example = self.Example(
                            qas_id=qas_id,
                            question_text=question_text,
                            doc_tokens=doc_tokens,
                            orig_answer_text=orig_answer_text,
                            start_position=start_pos,
                            end_position=end_pos)
                        examples.append(example)

        return examples

    def _improve_answer_span(self, doc_tokens, input_start, input_end,
                             tokenizer, orig_answer_text):
        tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

        for new_start in range(input_start, input_end + 1):
            for new_end in range(input_end, new_start - 1, -1):
                text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
                if text_span == tok_answer_text:
                    return (new_start, new_end)

        return (input_start, input_end)

    def _check_is_max_context(self, doc_spans, cur_span_index, position):
        best_score = None
        best_span_index = None
        for (span_index, doc_span) in enumerate(doc_spans):
            end = doc_span.start + doc_span.length - 1
            if position < doc_span.start:
                continue
            if position > end:
                continue
            num_left_context = position - doc_span.start
            num_right_context = end - position
            score = min(num_left_context,
                        num_right_context) + 0.01 * doc_span.length
            if best_score is None or score > best_score:
                best_score = score
                best_span_index = span_index

        return cur_span_index == best_span_index

    def _convert_example_to_feature(self, examples, max_seq_length, tokenizer,
X
xixiaoyao 已提交
763
                                    is_training, remove_noanswer=True):
X
xixiaoyao 已提交
764 765 766
        features = []
        unique_id = 1000000000

X
xixiaoyao 已提交
767
        print('converting examples to features...')
X
xixiaoyao 已提交
768
        for (example_index, example) in enumerate(examples):
X
xixiaoyao 已提交
769
            if example_index % 1000 == 0:
X
xixiaoyao 已提交
770
                print('processing {}th example...'.format(example_index))
X
xixiaoyao 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
            query_tokens = tokenizer.tokenize(example.question_text)
            if len(query_tokens) > self.max_query_length:
                query_tokens = query_tokens[0:self.max_query_length]
            tok_to_orig_index = []
            orig_to_tok_index = []
            all_doc_tokens = []
            for (i, token) in enumerate(example.doc_tokens):
                orig_to_tok_index.append(len(all_doc_tokens))
                sub_tokens = tokenizer.tokenize(token)
                for sub_token in sub_tokens:
                    tok_to_orig_index.append(i)
                    all_doc_tokens.append(sub_token)

            tok_start_position = None
            tok_end_position = None
            if is_training:
                tok_start_position = orig_to_tok_index[example.start_position]
                if example.end_position < len(example.doc_tokens) - 1:
                    tok_end_position = orig_to_tok_index[example.end_position +
                                                         1] - 1
                else:
                    tok_end_position = len(all_doc_tokens) - 1
                (tok_start_position,
                 tok_end_position) = self._improve_answer_span(
                     all_doc_tokens, tok_start_position, tok_end_position,
                     tokenizer, example.orig_answer_text)

            max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
            doc_spans = []
            start_offset = 0
            while start_offset < len(all_doc_tokens):
                length = len(all_doc_tokens) - start_offset
                if length > max_tokens_for_doc:
                    length = max_tokens_for_doc
                doc_spans.append(self.DocSpan(start=start_offset, length=length))
                if start_offset + length == len(all_doc_tokens):
                    break
                start_offset += min(length, self.doc_stride)

            for (doc_span_index, doc_span) in enumerate(doc_spans):
                tokens = []
                token_to_orig_map = {}
                token_is_max_context = {}
                text_type_ids = []
                tokens.append("[CLS]")
                text_type_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    text_type_ids.append(0)
                tokens.append("[SEP]")
                text_type_ids.append(0)

                for i in range(doc_span.length):
                    split_token_index = doc_span.start + i
                    token_to_orig_map[len(tokens)] = tok_to_orig_index[
                        split_token_index]

                    is_max_context = self._check_is_max_context(
                        doc_spans, doc_span_index, split_token_index)
                    token_is_max_context[len(tokens)] = is_max_context
                    tokens.append(all_doc_tokens[split_token_index])
                    text_type_ids.append(1)
                tokens.append("[SEP]")
                text_type_ids.append(1)

                token_ids = tokenizer.convert_tokens_to_ids(tokens)
                position_ids = list(range(len(token_ids)))
                start_position = None
                end_position = None
                if is_training:
                    doc_start = doc_span.start
                    doc_end = doc_span.start + doc_span.length - 1
                    out_of_span = False
                    if not (tok_start_position >= doc_start and
                            tok_end_position <= doc_end):
                        out_of_span = True
                    if out_of_span:
                        start_position = 0
                        end_position = 0
X
xixiaoyao 已提交
850 851
                        if remove_noanswer:
                            continue
X
xixiaoyao 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
                    else:
                        doc_offset = len(query_tokens) + 2
                        start_position = tok_start_position - doc_start + doc_offset
                        end_position = tok_end_position - doc_start + doc_offset

                feature = self.Feature(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    token_ids=token_ids,
                    position_ids=position_ids,
                    text_type_ids=text_type_ids,
                    start_position=start_position,
                    end_position=end_position)
                features.append(feature)

                unique_id += 1

        return features

    def _prepare_batch_data(self, records, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0

X
xixiaoyao 已提交
879 880 881
        if len(records) < batch_size:
            raise Exception('mrc dataset contains too few samples. Expect more than '+str(batch_size))

X
xixiaoyao 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
        for index, record in enumerate(records):
            if phase == "train":
                self.current_example = index
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records, phase == "train")
                batch_records, max_len = [record], len(record.token_ids)

        if phase == 'pred' and batch_records:
            yield self._pad_batch_records(batch_records, phase == "train")

    def _pad_batch_records(self, batch_records, is_training):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        if is_training:
            batch_start_position = [
                record.start_position for record in batch_records
            ]
            batch_end_position = [
                record.end_position for record in batch_records
            ]
            batch_start_position = np.array(batch_start_position).astype(
W
wangxiao 已提交
911
                "int64").reshape([-1])
X
xixiaoyao 已提交
912
            batch_end_position = np.array(batch_end_position).astype(
W
wangxiao 已提交
913
                "int64").reshape([-1])
X
xixiaoyao 已提交
914 915 916 917

        else:
            batch_size = len(batch_token_ids)
            batch_start_position = np.zeros(
W
wangxiao 已提交
918 919
                shape=[batch_size], dtype="int64")
            batch_end_position = np.zeros(shape=[batch_size], dtype="int64")
X
xixiaoyao 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

        batch_unique_ids = [record.unique_id for record in batch_records]
        batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape(
            [-1, 1])

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pad_idx=self.pad_id)
        padded_task_ids = np.ones_like(
            padded_token_ids, dtype="int64") * self.task_id

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            padded_task_ids, input_mask, batch_start_position,
            batch_end_position, batch_unique_ids
        ]

        return return_list

    def get_num_examples(self, phase):
        return len(self.features[phase])

    def get_features(self, phase):
        return self.features[phase]

    def get_examples(self, phase):
        return self.examples[phase]

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):

        examples = self.examples.get(phase, None)
        features = self.features.get(phase, None)
        if not examples:
            examples = self._read_json(input_file, phase == "train")
            features = self._convert_example_to_feature(
X
xixiaoyao 已提交
965
                examples, self.max_seq_len, self.tokenizer, phase == "train", remove_noanswer=self.remove_noanswer)
X
xixiaoyao 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
            self.examples[phase] = examples
            self.features[phase] = features

        def wrapper():
            all_dev_batches = []
            if epoch is None:
                num_epochs = 99999999
            else:
                num_epochs = epoch
            for epoch_index in range(num_epochs):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                if phase == "train" and shuffle:
                    np.random.shuffle(features)

                for batch_data in self._prepare_batch_data(
                        features, batch_size, phase=phase):
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        for batch in all_dev_batches:
                            yield batch
                        all_dev_batches = []

        return wrapper


if __name__ == '__main__':
    pass