reader_helper.py 9.5 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import random
import numpy as np
import paddle
from paddle import fluid


X
xixiaoyao 已提交
24
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
X
xixiaoyao 已提交
25 26 27 28 29 30 31
    if not isinstance(rt_val, np.ndarray):
        rt_val = np.array(rt_val)
        assert rt_val.dtype != np.dtype('O'), "yielded data is not a valid tensor(number of elements on some dimension may differ)."
        if rt_val.dtype == np.dtype('float64'):
            rt_val = rt_val.astype('float32')
    
    shape, dtype = attr
X
xixiaoyao 已提交
32 33
    assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
    assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
X
xixiaoyao 已提交
34 35 36
    for rt, exp in zip(rt_val.shape, shape):
        if exp is None or exp < 0:
            continue
X
xixiaoyao 已提交
37
        assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt)
X
xixiaoyao 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    return rt_val
    

def _zero_batch(attrs):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size if size and size > 0 else 1 for size in shape]
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
def _zero_batch_x(attrs, batch_size):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size for size in shape]
        if pos_shape[0] == -1:
            pos_shape[0] = batch_size
        if pos_shape[1] == -1:
            pos_shape[1] = 512 # max seq len
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
63 64 65 66
def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1):
    inputs = []
    ret = {}
    for name, shape, dtype in input_attrs:
W
wangxiao 已提交
67
        p = fluid.data(name, shape=shape, dtype=dtype)
X
xixiaoyao 已提交
68 69 70 71 72
        ret[name] = p
        inputs.append(p)

    if async:
        assert iterator_fn is not None, "iterator_fn is needed for building async input layer."
X
xixiaoyao 已提交
73
        reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False)
X
xixiaoyao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        reader.decorate_batch_generator(iterator_fn)
        reader.start()

    return ret


def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0):

    def iterator():
        v = verbose
        while True:
            results = _zero_batch(shape_and_dtypes)

            outputs = next(iterator) # dict type
            prefix = iterator_prefixe
            for outname, val in outputs.items():
                task_outname = prefix + '/' + outname

                if outname in outname_to_pos:
                    idx = outname_to_pos[outname]
                    val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx])
                    results[idx] = val

                if task_outname in outname_to_pos:
                    idx = outname_to_pos[task_outname]
                    val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx])
                    results[idx] = val

            yield results

    return iterator


X
xixiaoyao 已提交
107
def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0):
X
xixiaoyao 已提交
108 109 110
    """
        joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查
    """
X
xixiaoyao 已提交
111

X
xixiaoyao 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    results = _zero_batch(joint_shape_and_dtypes)
    outbuf = {}
    for id in task_ids:
        outputs = next(iterators[id]) # dict type
        outbuf[id] = outputs
        prefix = iterator_prefixes[id]
        for outname, val in outputs.items():
            task_outname = prefix + '/' + outname

            if outname in outname_to_pos:
                idx = outname_to_pos[outname]
X
xixiaoyao 已提交
128
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
129 130 131 132
                results[idx] = val

            if task_outname in outname_to_pos:
                idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
133
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
134 135 136 137 138 139 140
                results[idx] = val

    fake_batch = results
    dev_count_bak = dev_count

    def iterator():
        v = verbose
X
xixiaoyao 已提交
141
        has_show_warn = False
X
xixiaoyao 已提交
142 143 144 145 146 147 148 149 150
        while True:
            id = np.random.choice(task_ids, p=weights)
            results = fake_batch
            if v > 0:
                print('----- debug joint iterator -----')
                print('sampled task id: '+str(id))
            task_id_tensor = np.array([[id]]).astype("int64")
            
            for i in range(dev_count):
X
xixiaoyao 已提交
151 152 153 154
                
                results[outname_to_pos['__task_id']] = task_id_tensor
                assert outname_to_pos['__task_id'] == 0

X
xixiaoyao 已提交
155 156 157 158 159 160
                if id in outbuf:
                    outputs = outbuf[id]
                    del outbuf[id]
                else:
                    outputs = next(iterators[id]) # dict type

X
xixiaoyao 已提交
161 162
                if 'token_ids' in outputs:
                    val1 = len(outputs['token_ids'])
W
wangxiao1021 已提交
163
                    val = _check_and_adapt_shape_dtype(np.array([val1], dtype='int64'), [[1], 'int64'], iterator_prefixes[id]+' tokenids: ')
X
xixiaoyao 已提交
164 165 166
                    results[outname_to_pos['batch_size']] = val

                    val2 = len(outputs['token_ids'][0])
W
wangxiao1021 已提交
167
                    val = _check_and_adapt_shape_dtype(np.array([val2], dtype='int64'), [[1], 'int64'])
X
xixiaoyao 已提交
168 169
                    results[outname_to_pos['seqlen']] = val

W
wangxiao1021 已提交
170
                    val = _check_and_adapt_shape_dtype(np.array([val1*val2], dtype='int64'), [[1], 'int64'])
X
xixiaoyao 已提交
171 172 173 174 175
                    results[outname_to_pos['batchsize_x_seqlen']] = val
                else:
                    if not has_show_warn:
                        print('WARNING: token_ids not found in current batch, failed to yield batch_size, seqlen and batchsize_x_seqlen. (This message would be shown only once.)')
                        has_show_warn = True
X
xixiaoyao 已提交
176

X
xixiaoyao 已提交
177 178 179 180 181 182 183 184 185 186
                prefix = iterator_prefixes[id]
                for outname, val in outputs.items():
                    if v > 0:
                        print('reader generate: '+outname)
                    task_outname = prefix + '/' + outname

                    if outname in outname_to_pos:
                        idx = outname_to_pos[outname]
                        if v > 0:
                            print(outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
187
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
188 189 190 191 192 193
                        results[idx] = val

                    if task_outname in outname_to_pos:
                        idx = outname_to_pos[task_outname]
                        if v > 0:
                            print(task_outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
194
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
                        results[idx] = val

                if v > 0:
                    print('yielded batch len and shapes:')
                    print(len(results))
                    for i in results:
                        print(np.shape(i))
                    print('')
                    v -= 1
                yield results

    return iterator


X
xixiaoyao 已提交
209
def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True, insert_batchsize=True, insert_seqlen=True, insert_batchsize_x_seqlen=True):
X
xixiaoyao 已提交
210 211 212 213 214 215 216
    """
    Args:
        task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks
    """
    if isinstance(task_attrs, dict):
        task_attrs = [task_attrs]

X
xixiaoyao 已提交
217 218 219
    ret = []
    names = []
    start = 0
X
xixiaoyao 已提交
220
    if insert_taskid:
W
wangxiao 已提交
221
        ret.append(([1, 1], 'int64'))
X
xixiaoyao 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        names.append('__task_id')
        start += 1
    
    if insert_batchsize:
        ret.append(([1], 'int64'))
        names.append('batch_size')
        start += 1

    if insert_seqlen:
        ret.append(([1], 'int64'))
        names.append('seqlen')
        start += 1

    if insert_batchsize_x_seqlen:
        ret.append(([1], 'int64'))
X
xixiaoyao 已提交
237
        names.append(u'batchsize_x_seqlen')
X
xixiaoyao 已提交
238
        start += 1
X
xixiaoyao 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        
    names += sorted(backbone_attr.keys())
    ret.extend([backbone_attr[k] for k in names[start:]])
    name_to_position = {}
    # pos=0 is for task_id, thus we start from 1
    for pos, k in enumerate(names):
        name_to_position[k] = pos
    for task_attr in task_attrs:
        task_names = sorted(task_attr.keys())
        names.extend(task_names)
        ret.extend([task_attr[k] for k in task_names])
        for pos, k in enumerate(task_names, start=len(name_to_position)):
            name_to_position[k] = pos
    return names, ret, name_to_position