reader_helper.py 9.5 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import random
import numpy as np
import paddle
from paddle import fluid
from paddle.fluid import layers


X
xixiaoyao 已提交
25
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
X
xixiaoyao 已提交
26 27 28 29 30 31 32
    if not isinstance(rt_val, np.ndarray):
        rt_val = np.array(rt_val)
        assert rt_val.dtype != np.dtype('O'), "yielded data is not a valid tensor(number of elements on some dimension may differ)."
        if rt_val.dtype == np.dtype('float64'):
            rt_val = rt_val.astype('float32')
    
    shape, dtype = attr
X
xixiaoyao 已提交
33 34
    assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
    assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
X
xixiaoyao 已提交
35 36 37
    for rt, exp in zip(rt_val.shape, shape):
        if exp is None or exp < 0:
            continue
X
xixiaoyao 已提交
38
        assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt)
X
xixiaoyao 已提交
39 40 41 42 43 44 45 46 47 48 49 50
    return rt_val
    

def _zero_batch(attrs):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size if size and size > 0 else 1 for size in shape]
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
def _zero_batch_x(attrs, batch_size):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size for size in shape]
        if pos_shape[0] == -1:
            pos_shape[0] = batch_size
        if pos_shape[1] == -1:
            pos_shape[1] = 512 # max seq len
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
64 65 66 67 68 69 70 71 72 73
def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1):
    inputs = []
    ret = {}
    for name, shape, dtype in input_attrs:
        p = layers.data(name, shape=shape, dtype=dtype)
        ret[name] = p
        inputs.append(p)

    if async:
        assert iterator_fn is not None, "iterator_fn is needed for building async input layer."
X
xixiaoyao 已提交
74
        reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False)
X
xixiaoyao 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        reader.decorate_batch_generator(iterator_fn)
        reader.start()

    return ret


def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0):

    def iterator():
        v = verbose
        while True:
            results = _zero_batch(shape_and_dtypes)

            outputs = next(iterator) # dict type
            prefix = iterator_prefixe
            for outname, val in outputs.items():
                task_outname = prefix + '/' + outname

                if outname in outname_to_pos:
                    idx = outname_to_pos[outname]
                    val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx])
                    results[idx] = val

                if task_outname in outname_to_pos:
                    idx = outname_to_pos[task_outname]
                    val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx])
                    results[idx] = val

            yield results

    return iterator


X
xixiaoyao 已提交
108
def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0):
X
xixiaoyao 已提交
109 110 111
    """
        joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查
    """
X
xixiaoyao 已提交
112

X
xixiaoyao 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    results = _zero_batch(joint_shape_and_dtypes)
    outbuf = {}
    for id in task_ids:
        outputs = next(iterators[id]) # dict type
        outbuf[id] = outputs
        prefix = iterator_prefixes[id]
        for outname, val in outputs.items():
            task_outname = prefix + '/' + outname

            if outname in outname_to_pos:
                idx = outname_to_pos[outname]
X
xixiaoyao 已提交
129
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
130 131 132 133
                results[idx] = val

            if task_outname in outname_to_pos:
                idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
134
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
135 136 137 138 139 140 141
                results[idx] = val

    fake_batch = results
    dev_count_bak = dev_count

    def iterator():
        v = verbose
X
xixiaoyao 已提交
142
        has_show_warn = False
X
xixiaoyao 已提交
143 144 145 146 147 148 149 150 151
        while True:
            id = np.random.choice(task_ids, p=weights)
            results = fake_batch
            if v > 0:
                print('----- debug joint iterator -----')
                print('sampled task id: '+str(id))
            task_id_tensor = np.array([[id]]).astype("int64")
            
            for i in range(dev_count):
X
xixiaoyao 已提交
152 153 154 155
                
                results[outname_to_pos['__task_id']] = task_id_tensor
                assert outname_to_pos['__task_id'] == 0

X
xixiaoyao 已提交
156 157 158 159 160 161
                if id in outbuf:
                    outputs = outbuf[id]
                    del outbuf[id]
                else:
                    outputs = next(iterators[id]) # dict type

X
xixiaoyao 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                if 'token_ids' in outputs:
                    val1 = len(outputs['token_ids'])
                    val = _check_and_adapt_shape_dtype([val1], [[1], 'int64'])
                    results[outname_to_pos['batch_size']] = val

                    val2 = len(outputs['token_ids'][0])
                    val = _check_and_adapt_shape_dtype([val2], [[1], 'int64'])
                    results[outname_to_pos['seqlen']] = val

                    val = _check_and_adapt_shape_dtype([val1*val2], [[1], 'int64'])
                    results[outname_to_pos['batchsize_x_seqlen']] = val
                else:
                    if not has_show_warn:
                        print('WARNING: token_ids not found in current batch, failed to yield batch_size, seqlen and batchsize_x_seqlen. (This message would be shown only once.)')
                        has_show_warn = True
X
xixiaoyao 已提交
177

X
xixiaoyao 已提交
178 179 180 181 182 183 184 185 186 187
                prefix = iterator_prefixes[id]
                for outname, val in outputs.items():
                    if v > 0:
                        print('reader generate: '+outname)
                    task_outname = prefix + '/' + outname

                    if outname in outname_to_pos:
                        idx = outname_to_pos[outname]
                        if v > 0:
                            print(outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
188
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
189 190 191 192 193 194
                        results[idx] = val

                    if task_outname in outname_to_pos:
                        idx = outname_to_pos[task_outname]
                        if v > 0:
                            print(task_outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
195
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209
                        results[idx] = val

                if v > 0:
                    print('yielded batch len and shapes:')
                    print(len(results))
                    for i in results:
                        print(np.shape(i))
                    print('')
                    v -= 1
                yield results

    return iterator


X
xixiaoyao 已提交
210
def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True, insert_batchsize=True, insert_seqlen=True, insert_batchsize_x_seqlen=True):
X
xixiaoyao 已提交
211 212 213 214 215 216 217
    """
    Args:
        task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks
    """
    if isinstance(task_attrs, dict):
        task_attrs = [task_attrs]

X
xixiaoyao 已提交
218 219 220
    ret = []
    names = []
    start = 0
X
xixiaoyao 已提交
221
    if insert_taskid:
X
xixiaoyao 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        ret.append(([1,1], 'int64'))
        names.append('__task_id')
        start += 1
    
    if insert_batchsize:
        ret.append(([1], 'int64'))
        names.append('batch_size')
        start += 1

    if insert_seqlen:
        ret.append(([1], 'int64'))
        names.append('seqlen')
        start += 1

    if insert_batchsize_x_seqlen:
        ret.append(([1], 'int64'))
X
xixiaoyao 已提交
238
        names.append(u'batchsize_x_seqlen')
X
xixiaoyao 已提交
239
        start += 1
X
xixiaoyao 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        
    names += sorted(backbone_attr.keys())
    ret.extend([backbone_attr[k] for k in names[start:]])
    name_to_position = {}
    # pos=0 is for task_id, thus we start from 1
    for pos, k in enumerate(names):
        name_to_position[k] = pos
    for task_attr in task_attrs:
        task_names = sorted(task_attr.keys())
        names.extend(task_names)
        ret.extend([task_attr[k] for k in task_names])
        for pos, k in enumerate(task_names, start=len(name_to_position)):
            name_to_position[k] = pos
    return names, ret, name_to_position