未验证 提交 b0aa23dc 编写于 作者: Z zhongpu 提交者: GitHub

[cherry-pick] fix Conv2DTranspose API (#1650)

上级 8212684a
......@@ -5,7 +5,7 @@ Conv2DTranspose
.. py:class:: paddle.fluid.dygraph.Conv2DTranspose(name_scope, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)
该接口用于构建 ``Conv2DTranspose`` 类的一个可调用对象,具体用法参照 ``代码示例`` 。其将在神经网络中构建一个二维卷积转置层(Convlution2D Transpose Layer),其根据输入(input)、滤波器参数(num_filters、filter_size)、步长(stride)、填充(padding)、膨胀系数(dilation)、组数(groups)来计算得到输出特征图。输入和输出是 ``NCHW`` 格式,N是批数据大小,C是特征图个数,H是特征图高度,W是特征图宽度。滤波器的维度是 [M, C, H, W] ,M是输出特征图个数,C是输入特征图个数,H是滤波器高度,W是滤波器宽度。如果组数大于1,C等于输入特征图个数除以组数的结果。如果提供了偏移属性和激活函数类型,卷积的结果会和偏移相加,激活函数会作用在最终结果上。转置卷积的计算过程相当于卷积的反向计算,转置卷积又被称为反卷积(但其实并不是真正的反卷积)。详情请参考: `Conv2DTranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ 。
该接口用于构建 ``Conv2DTranspose`` 类的一个可调用对象,具体用法参照 ``代码示例`` 。其将在神经网络中构建一个二维卷积转置层(Convlution2D Transpose Layer),其根据输入(input)、滤波器参数(num_filters、filter_size)、步长(stride)、填充(padding)、膨胀系数(dilation)、组数(groups)来计算得到输出特征图。输入和输出是 ``NCHW`` 格式,N是批数据大小,C是特征图个数,H是特征图高度,W是特征图宽度。滤波器的维度是 [M, C, H, W] ,M是输入特征图个数,C是输出特征图个数,H是滤波器高度,W是滤波器宽度。如果组数大于1,C等于输入特征图个数除以组数的结果。如果提供了偏移属性和激活函数类型,卷积的结果会和偏移相加,激活函数会作用在最终结果上。转置卷积的计算过程相当于卷积的反向计算,转置卷积又被称为反卷积(但其实并不是真正的反卷积)。详情请参考: `Conv2DTranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ 。
输入 ``X`` 和输出 ``Out`` 的函数关系如下:
......@@ -26,7 +26,7 @@ Conv2DTranspose
输入维度: :math:`(N,C_{in},H_{in},W_{in})`
滤波器维度: :math:`(C_{out},C_{in},H_{f},W_{f})`
滤波器维度: :math:`(C_{in},C_{out},H_{f},W_{f})`
- 输出:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册