未验证 提交 6233e0bc 编写于 作者: C Chen Long 提交者: GitHub

fix_some_docs test=develop (#2552)

上级 feecb413
.. _cn_api_fluid_dygraph_load_dygraph:
load_dygraph
-------------------------------
load
----
.. py:function:: paddle.fluid.dygraph.load_dygraph(model_path)
.. py:function:: paddle.load(model_path, configs=None)
:api_attr: 命令式编程模式(动态图)
该接口用于从磁盘中加载Layer和Optimizer的 ``state_dict`` ,该接口会同时加载 ``model_path + ".pdparams"`` 和 ``model_path + ".pdopt"`` 中的内容。
该接口尝试从磁盘中加载参数或优化器的 ``dict`` 。
该接口会同时加载 ``model_path + ".pdparams"`` 和 ``model_path + ".pdopt"`` 中的内容。
.. note::
由于一些历史原因,如果从 ``paddle.io.save_inference_model`` 的存储结果中载入 ``state_dict`` ,动态图模式下参数的结构性变量名将无法被恢复。并且在将载入的 ``state_dict`` 配置到当前Layer中时,需要配置 ``Layer.set_state_dict`` 的参数 ``use_structured_name=False`` 。
参数:
- **model_path** (str) – 保存state_dict的文件前缀。该路径不应该包括后缀 ``.pdparams`` 或 ``.pdopt``。
- **model_path** (str) – 保存state_dict的文件前缀。该路径不应该包括后缀 ``.pdparams`` 或 ``.pdopt``。
- **configs** (SaveLoadConfig, 可选) - 用于指定额外配置选项的 :ref:`cn_api_fluid_dygraph_jit_SaveLoadConfig` 对象,这些选项主要是用于兼容 ``paddle.io.save_inference_model`` 存储模型的格式。默认为 ``None``。
返回: 两个 ``dict`` ,即从文件中恢复的参数 ``dict`` 和优化器 ``dict``
返回: 两个 ``dict`` ,即从文件中恢复的模型参数 ``dict`` 和优化器参数 ``dict``,如果只找到其中一个的存储文件,另一个返回None
- para_dict: 从文件中恢复的参数 ``dict``
- opti_dict: 从文件中恢复的优化器 ``dict``
- param_dict: 从文件中恢复的模型参数 ``dict``
- opt_dict: 从文件中恢复的优化器参数 ``dict``
返回类型: tuple(dict, dict)
......@@ -29,18 +29,24 @@ load_dygraph
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
fluid.save_dygraph( state_dict, "paddle_dy")
adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000) ,
parameter_list = emb.parameters() )
state_dict = adam.state_dict()
fluid.save_dygraph( state_dict, "paddle_dy")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
state_dict = adam.state_dict()
paddle.save(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
para_state_dict, opti_state_dict = paddle.load("paddle_dy")
......@@ -15,70 +15,180 @@ TranslatedLayer
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
BATCH_SIZE = 32
BATCH_NUM = 20
def random_batch_reader():
def _get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = _get_random_images_and_labels(
[BATCH_SIZE, 784], [BATCH_SIZE, 1])
yield batch_image, batch_label
return __reader__
class LinearNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
# 开启命令式编程模式
fluid.enable_dygraph()
# 1. 训练存储模型.
# 创建网络
net = LinearNet(784, 1)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
# 创建DataLoader
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(random_batch_reader())
# 训练
for data in train_loader():
img, label = data
label.stop_gradient = True
cost = net(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
net.clear_gradients()
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)
# 1. train & save model.
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
# save
model_path = "linear.example.model"
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[img])
# 2. 载入模型构建TranslatedLayer
translated_layer = fluid.dygraph.jit.load(model_path)
# 预测
paddle.jit.save(layer, model_path)
# 2. load model as TranslatedLayer
# load
translated_layer = paddle.jit.load(model_path)
# inference
translated_layer.eval()
x = fluid.dygraph.to_variable(np.random.random((1, 784)).astype('float32'))
x = paddle.randn([1, IMAGE_SIZE], 'float32')
pred = translated_layer(x)
# fine-tune训练
# fine-tune
translated_layer.train()
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=translated_layer.parameters())
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(random_batch_reader())
for data in train_loader():
img, label = data
label.stop_gradient = True
cost = translated_layer(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
translated_layer.clear_gradients()
adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
train(translated_layer, loader, loss_fn, adam)
.. py:method:: program(method_name='forward'):
获取TranslatedLayer中指定方法对应的Program。
参数:
- **method_name** (string) - 要获取的Porgram对应的方法名。默认值为"forward"。
返回:Program
返回类型:Program
**示例代码:**
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
# save
model_path = "linear.example.model"
paddle.jit.save(layer, model_path)
# load
translated_layer = paddle.jit.load(model_path)
# get program
program = translated_layer.program()
print(program)
......@@ -391,13 +391,14 @@ buffer是一个非参数类型的变量,不会被优化器更新,但在评
state_dict = emb.state_dict()
fluid.save_dygraph(state_dict, "paddle_dy")
.. py:method:: set_dict(stat_dict, include_sublayers=True)
.. py:method:: set_state_dict(state_dict, include_sublayers=True, use_structured_name=True)
根据传入的 ``stat_dict`` 设置参数和可持久性buffers 所有参数和buffers将由 ``stat_dict`` 中的 ``Tensor`` 设置。
根据传入的 ``state_dict`` 设置参数和可持久性buffers 所有参数和buffers将由 ``state_dict`` 中的 ``Tensor`` 设置。
参数:
- **state_dict** (dict) - 包含所有参数和可持久性buffersdict
- **include_sublayers** (bool, 可选) - 如果设置为True,则还包括子层的参数和buffers 默认值:True
- **use_structured_name** (bool, 可选) - 如果设置为True,将使用Layer的结构性变量名作为dictkey,否则将使用Parameter或者Buffer的变量名作为key。默认值:True
返回:None
......@@ -405,36 +406,16 @@ buffer是一个非参数类型的变量,不会被优化器更新,但在评
.. code-block:: python
import paddle.fluid as fluid
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, _ = fluid.load_dygraph("paddle_dy")
emb.set_dict(para_state_dict)
.. py:method:: load_dict(stat_dict, include_sublayers=True)
.. warning::
该函数将被弃用。请使用set_dict函数。
根据传入的 ``stat_dict`` 设置参数和可持久性buffers 所有参数和buffers将由 ``stat_dict`` 中的 ``Tensor`` 设置。
参数:
- **state_dict** (dict) - 包含所有参数和可持久性buffersdict
- **include_sublayers** (bool, 可选) - 如果设置为True,则还包括子层的参数和buffers 默认值:True
返回:None
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
**代码示例**
.. code-block:: python
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
para_state_dict, _ = paddle.load("paddle_dy")
import paddle.fluid as fluid
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, _ = fluid.load_dygraph("paddle_dy")
emb.load_dict(para_state_dict)
emb.set_state_dict(para_state_dict)
.. _cn_api_fluid_dygraph_jit_SaveLoadConfig:
SaveLoadConfig
--------------
.. py:class:: paddle.SaveLoadConfig()
用于配置接口 :ref:`cn_api_fluid_dygraph_jit_save` 和 :ref:`cn_api_fluid_dygraph_jit_load` 存储载入 :ref:`cn_api_fluid_dygraph_TranslatedLayer` 时的附加选项。
**示例代码:**
1. 在存储模型时使用 ``SaveLoadConfig``
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
class SimpleNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# 开启命令式编程模式
fluid.enable_dygraph()
# 训练模型
net = SimpleNet(8, 8)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
for i in range(10):
out = net(x)
loss = fluid.layers.mean(out)
loss.backward()
adam.minimize(loss)
net.clear_gradients()
# 在存储模型时使用SaveLoadConfig
model_path = "simplenet.example.model"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.model_filename = "__simplenet__"
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[x],
configs=configs)
2. 在载入模型时使用 ``SaveLoadConfig``
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
# 开启命令式编程模式
fluid.enable_dygraph()
# 在载入模型时使用SaveLoadconfig
model_path = "simplenet.example.model"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.model_filename = "__simplenet__"
infer_net = fluid.dygraph.jit.load(model_path, configs=configs)
# 预测
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
pred = infer_net(x)
属性
::::::::::::
.. py:attribute:: output_spec
选择保存模型( :ref:`cn_api_fluid_dygraph_TranslatedLayer` )的输出变量,通过指定的这些变量能够使模型仅计算特定的结果。
默认情况下,原始 :ref:`cn_api_fluid_dygraph_Layer` 的forward方法的所有返回变量都将配置为存储后模型 :ref:`cn_api_fluid_dygraph_TranslatedLayer` 的输出变量。
``output_spec`` 属性类型需要是 ``list[Variable]``。如果输入的 ``output_spec`` 列表不是原始 :ref:`cn_api_fluid_dygraph_Layer` 的forward方法的所有返回变量,
将会依据输入的 ``output_spec`` 列表对存储的模型进行裁剪。
.. note::
``output_spec`` 属性仅在存储模型时使用。
**示例代码:**
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
class SimpleNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
loss = fluid.layers.mean(z)
return z, loss
# 开启命令式编程模式
fluid.enable_dygraph()
# 训练模型
net = SimpleNet(8, 8)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
for i in range(10):
out, loss = net(x)
loss.backward()
adam.minimize(loss)
net.clear_gradients()
# 使用SaveLoadconfig.output_spec
model_path = "simplenet.example.model.output_spec"
configs = fluid.dygraph.jit.SaveLoadConfig()
# 仅在存储模型中保留预测结果,丢弃loss
configs.output_spec = [out]
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[x],
configs=configs)
infer_net = fluid.dygraph.jit.load(model_path, configs=configs)
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
# 仅有预测结果输出
pred = infer_net(x)
.. py:attribute:: model_filename
存储转写 :ref:`cn_api_fluid_dygraph_Layer` 模型结构 ``Program`` 的文件名称。默认文件名为 ``__model__``。
**示例代码**
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
class SimpleNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# 开启命令式编程模式
fluid.enable_dygraph()
# 训练模型
net = SimpleNet(8, 8)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
for i in range(10):
out = net(x)
loss = fluid.layers.mean(out)
loss.backward()
adam.minimize(loss)
net.clear_gradients()
model_path = "simplenet.example.model.model_filename"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.model_filename = "__simplenet__"
# 配置configs.model_filename存储模型
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[x],
configs=configs)
# [结果] 存储模型目录文件包括:
# __simplenet__ __variables__ __variables.info__
# 配置configs.model_filename载入模型
infer_net = fluid.dygraph.jit.load(model_path, configs=configs)
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
pred = infer_net(x)
.. py:attribute:: params_filename
存储转写 :ref:`cn_api_fluid_dygraph_Layer` 所有持久参数(包括 ``Parameters`` 和持久的 ``Buffers``)的文件名称。默认文件名称为 ``__variable__``。
**示例代码**
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
class SimpleNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# 开启命令式编程模式
fluid.enable_dygraph()
# 训练模型
net = SimpleNet(8, 8)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
for i in range(10):
out = net(x)
loss = fluid.layers.mean(out)
loss.backward()
adam.minimize(loss)
net.clear_gradients()
model_path = "simplenet.example.model.params_filename"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.params_filename = "__params__"
# 配置configs.params_filename存储模型
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[x],
configs=configs)
# [结果] 存储模型目录文件包括:
# __model__ __params__ __variables.info__
# 配置configs.params_filename载入模型
infer_net = fluid.dygraph.jit.load(model_path, configs=configs)
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
pred = infer_net(x)
.. py:attribute:: separate_params
配置是否将 :ref:`cn_api_fluid_dygraph_Layer` 的参数存储为分散的文件。
(这是为了兼容接口 :ref:`cn_api_fluid_io_save_inference_model` 的行为)
如果设置为 ``True`` ,每个参数将会被存储为一个文件,文件名为参数名,同时``SaveLoadConfig.params_filename`` 指定的文件名将不会生效。默认为 ``False``。
**示例代码**
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative
class SimpleNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(SimpleNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
return z
# 开启命令式编程模式
fluid.enable_dygraph()
# 训练模型
net = SimpleNet(8, 8)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
for i in range(10):
out = net(x)
loss = fluid.layers.mean(out)
loss.backward()
adam.minimize(loss)
net.clear_gradients()
model_path = "simplenet.example.model.separate_params"
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.separate_params = True
# 配置configs.separate_params存储模型
fluid.dygraph.jit.save(
layer=net,
model_path=model_path,
input_spec=[x],
configs=configs)
# [结果] 存储模型目录文件包括:
# linear_0.b_0 linear_0.w_0 __model__ __variables.info__
# 配置configs.params_filename载入模型
infer_net = fluid.dygraph.jit.load(model_path, configs=configs)
x = fluid.dygraph.to_variable(np.random.random((4, 8)).astype('float32'))
pred = infer_net(x)
.. py:attribute:: keep_name_table
配置是否保留 ``paddle.load`` 载入结果中 ``structured_name`` 到真实的参数变量名的映射表。这个映射表是调用 ``paddle.save`` 时存储的,一般仅用于调试,移除此映射表不影响真实的训练和预测。默认情况下不会保留在 ``paddle.load`` 的结果中。默认值为False。
.. note::
该配置仅用于 ``paddle.load`` 方法。
**示例代码**
.. code-block:: python
import paddle
paddle.disable_static()
linear = paddle.nn.Linear(5, 1)
state_dict = linear.state_dict()
paddle.save(state_dict, "paddle_dy")
configs = paddle.SaveLoadConfig()
configs.keep_name_table = True
para_state_dict, _ = paddle.load("paddle_dy", configs)
print(para_state_dict)
# the name_table is 'StructuredToParameterName@@'
# {'bias': array([0.], dtype=float32),
# 'StructuredToParameterName@@':
# {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'},
# 'weight': array([[ 0.04230034],
# [-0.1222527 ],
# [ 0.7392676 ],
# [-0.8136974 ],
# [ 0.01211023]], dtype=float32)}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册