未验证 提交 feecb413 编写于 作者: L Leo Chen 提交者: GitHub

refine cn doc of stack (#2536)

* refine doc of stack

* update paddle api

* fix typo

* fix doc

* fix sample code

* fix code-block
上级 bb2241a5
......@@ -13,7 +13,7 @@ stack
- 例1:
.. code-block:: python
.. code-block:: text
输入:
x[0].shape = [1, 2]
......@@ -35,7 +35,7 @@ stack
- 例2:
.. code-block:: python
.. code-block:: text
输入:
x[0].shape = [1, 2]
......@@ -55,7 +55,7 @@ stack
[5.0, 6.0] ] ]
参数:
- **x** (Variable|list(Variable)) – 输入 x 可以是单个Tensor,或是多个Tensor组成的列表。如果 x 是一个列表,那么这些Tensor的维度必须相同。 假设输入是N维Tensor :math:`[d_0,d_1,...,d_{n−1}]`,则输出变量的维度为N+1维 :math:`[d_0,d_1,...d_{axis-1},len(x),d_{axis}...,d_{n−1}]` 。支持的数据类型: float32,float64,int32,int64。
- **x** (list(Variable)|tuple(Variable)) – 输入 x 是多个Tensor,且这些Tensor的维度和数据类型必须相同。支持的数据类型: float32,float64,int32,int64。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 ``axis`` 的范围是: :math:`[-(R+1), R+1)`,R是输入中第一个Tensor的rank。如果 ``axis`` < 0,则 :math:`axis=axis+rank(x[0])+1` 。axis默认值为0。
返回: 堆叠运算后的Tensor,数据类型与输入Tensor相同。输出维度等于 :math:`rank(x[0])+1` 维。
......@@ -68,19 +68,10 @@ stack
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
#对Tensor List进行堆叠
data = layers.stack([x1,x2]) # 沿着第0轴进行堆叠,data.shape=[2, 1, 2]
data = layers.stack([x1,x2], axis=1) # 沿着第1轴进行堆叠,data.shape=[1, 2, 2]
#单个Tensor的堆叠
data = layers.stack(x1) # 沿着第0轴进行堆叠,data.shape=[1, 1, 2]
# set batch size=None
x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
# stack Tensor list
data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]
data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]
......@@ -52,9 +52,9 @@ stack
[5.0, 6.0] ] ]
**参数**:
- **x** (Tensor|list[Tensor]) – 输入 x 可以是单个Tensor,或是多个Tensor组成的列表。如果 x 是一个列表,那么这些Tensor的维度必须相同。支持的数据类型: float32,float64,int32,int64。
- **x** (list[Tensor]|tuple[Tensor]) – 输入 x 是多个Tensor,且这些Tensor的维度和数据类型必须相同。支持的数据类型: float32,float64,int32,int64。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 axis 的范围是: [−(R+1),R+1)],R是输入中第一个Tensor的维数。如果 axis < 0,则 axis=axis+R+1 。默认值为0。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 axis 的范围是: [−(R+1),R+1],R是输入中第一个Tensor的维数。如果 axis < 0,则 axis=axis+R+1 。默认值为0。
- **name** (str, 可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
......
......@@ -13,7 +13,7 @@ stack
- 例1:
.. code-block:: python
.. code-block:: text
输入:
x[0].shape = [1, 2]
......@@ -35,7 +35,7 @@ stack
- 例2:
.. code-block:: python
.. code-block:: text
输入:
x[0].shape = [1, 2]
......@@ -55,7 +55,7 @@ stack
[5.0, 6.0] ] ]
参数:
- **x** (Variable|list(Variable)) – 输入 x 可以是单个Tensor,或是多个Tensor组成的列表。如果 x 是一个列表,那么这些Tensor的维度必须相同。 假设输入是N维Tensor :math:`[d_0,d_1,...,d_{n−1}]`,则输出变量的维度为N+1维 :math:`[d_0,d_1,...d_{axis-1},len(x),d_{axis}...,d_{n−1}]` 。支持的数据类型: float32,float64,int32,int64。
- **x** (list(Variable)|tuple(Variable)) – 输入 x 可以是单个Tensor,或是多个Tensor组成的列表。如果 x 是一个列表,那么这些Tensor的维度必须相同。 假设输入是N维Tensor :math:`[d_0,d_1,...,d_{n−1}]`,则输出变量的维度为N+1维 :math:`[d_0,d_1,...d_{axis-1},len(x),d_{axis}...,d_{n−1}]` 。支持的数据类型: float32,float64,int32,int64。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 ``axis`` 的范围是: :math:`[-(R+1), R+1)`,R是输入中第一个Tensor的rank。如果 ``axis`` < 0,则 :math:`axis=axis+rank(x[0])+1` 。axis默认值为0。
返回: 堆叠运算后的Tensor,数据类型与输入Tensor相同。输出维度等于 :math:`rank(x[0])+1` 维。
......@@ -68,19 +68,10 @@ stack
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
#对Tensor List进行堆叠
data = layers.stack([x1,x2]) # 沿着第0轴进行堆叠,data.shape=[2, 1, 2]
data = layers.stack([x1,x2], axis=1) # 沿着第1轴进行堆叠,data.shape=[1, 2, 2]
#单个Tensor的堆叠
data = layers.stack(x1) # 沿着第0轴进行堆叠,data.shape=[1, 1, 2]
# set batch size=None
x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
# stack Tensor list
data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]
data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]
......@@ -52,9 +52,9 @@ stack
[5.0, 6.0] ] ]
**参数**:
- **x** (Tensor|list[Tensor]) – 输入 x 可以是单个Tensor,或是多个Tensor组成的列表。如果 x 是一个列表,那么这些Tensor的维度必须相同。支持的数据类型: float32,float64,int32,int64。
- **x** (list[Tensor]|tuple[Tensor]) – 输入 x 是多个Tensor,且这些Tensor的维度和数据类型必须相同。支持的数据类型: float32,float64,int32,int64。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 axis 的范围是: [−(R+1),R+1)],R是输入中第一个Tensor的维数。如果 axis < 0,则 axis=axis+R+1 。默认值为0。
- **axis** (int, 可选) – 指定对输入Tensor进行堆叠运算的轴,有效 axis 的范围是: [−(R+1),R+1],R是输入中第一个Tensor的维数。如果 axis < 0,则 axis=axis+R+1 。默认值为0。
- **name** (str, 可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册