RMSPropOptimizer_cn.rst 8.8 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5
.. _cn_api_fluid_optimizer_RMSPropOptimizer:

RMSPropOptimizer
-------------------------------

6
.. py:class:: paddle.fluid.optimizer.RMSPropOptimizer(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, parameter_list=None, regularization=None, name=None)
H
Hao Wang 已提交
7

8
该接口实现均方根传播(RMSProp)法,是一种未发表的,自适应学习率的方法。原演示幻灯片中提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张。等式如下所示:
H
Hao Wang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

.. math::
    r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\
    w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w)
    
第一个等式计算每个权重平方梯度的移动平均值,然后将梯度除以 :math:`sqrtv(w,t)` 。
  
.. math::
   r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\
   v(w, t) & = \beta v(w, t-1) +\frac{\eta} {\sqrt{r(w,t) +\epsilon}} \nabla Q_{i}(w)\\
         w & = w - v(w, t)

如果居中为真:
  
.. math::
      r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\
      g(w, t) & = \rho g(w, t-1) + (1 -\rho)\nabla Q_{i}(w)\\
      v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +\epsilon}} \nabla Q_{i}(w)\\
            w & = w - v(w, t)
      
其中, :math:`ρ` 是超参数,典型值为0.9,0.95等。 :math:`beta` 是动量术语。  :math:`epsilon` 是一个平滑项,用于避免除零,通常设置在1e-4到1e-8的范围内。
      
参数:
    - **learning_rate** (float) - 全局学习率。
33
    - **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
34 35 36 37
    - **rho** (float,可选) - rho是等式中的 :math:`rho` ,默认值0.95。
    - **epsilon** (float,可选) - 等式中的epsilon是平滑项,避免被零除,默认值1e-6。
    - **momentum** (float,可选) - 方程中的β是动量项,默认值0.0。
    - **centered** (bool,可选) - 如果为True,则通过梯度的估计方差,对梯度进行归一化;如果False,则由未centered的第二个moment归一化。将此设置为True有助于模型训练,但会消耗额外计算和内存资源。默认为False。
38 39 40
    - **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、 
      :ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
      如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
41
    - **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
H
Hao Wang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    
抛出异常:
    - ``ValueError`` -如果 ``learning_rate`` , ``rho`` , ``epsilon`` , ``momentum`` 为None。

**示例代码**

.. code-block:: python

    import paddle
    import paddle.fluid as fluid
    import numpy as np
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        
        rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        rms_optimizer.minimize(avg_cost)
     
        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

75 76 77 78


.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)

79
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
80

81 82 83
参数:
    - **loss** (Variable) – 需要最小化的损失值变量
    - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` 
84
    - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
85
    - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
86 87 88
    - **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
      默认值为None,此时将不进行梯度裁剪。
        
89
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
90

91 92 93
返回类型: tuple

**示例代码**
94

95
.. code-block:: python
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    import paddle
    import paddle.fluid as fluid
    import numpy as np
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        
        rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        rms_optimizer.minimize(avg_cost)
     
        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
H
Hao Wang 已提交
121 122 123



124
.. py:method:: clear_gradients()
H
Hao Wang 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**


清除需要优化的参数的梯度。

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    with fluid.dygraph.guard():
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")
        optimizer = fluid.optimizer.RMSPropOptimizer(learning_rate=0.01,
                                      parameter_list=linear.parameters())
        out = linear(a)
        out.backward()
        optimizer.minimize(out)
        optimizer.clear_gradients()


.. py:method:: current_step_lr()

**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**

获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。

返回:当前步骤的学习率。

返回类型:float

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    # example1: LearningRateDecay is not used, return value is all the same
    with fluid.dygraph.guard():
        emb = fluid.dygraph.Embedding([10, 10])
        adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
        lr = adam.current_step_lr()
        print(lr) # 0.001

    # example2: PiecewiseDecay is used, return the step learning rate
    with fluid.dygraph.guard():
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = fluid.dygraph.nn.Linear(10, 10)
        inp = fluid.dygraph.to_variable(inp)
        out = linear(inp)
        loss = fluid.layers.reduce_mean(out)

        bd = [2, 4, 6, 8]
        value = [0.2, 0.4, 0.6, 0.8, 1.0]
        adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                           parameter_list=linear.parameters())

        # first step: learning rate is 0.2
        np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

        # learning rate for different steps
        ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
        for i in range(12):
            adam.minimize(loss)
            lr = adam.current_step_lr()
            np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
H
Hao Wang 已提交
200