SGDOptimizer_cn.rst 6.6 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5
.. _cn_api_fluid_optimizer_SGDOptimizer:

SGDOptimizer
-------------------------------

6
.. py:class:: paddle.fluid.optimizer.SGDOptimizer(learning_rate, parameter_list=None, regularization=None, name=None)
H
Hao Wang 已提交
7

8
该接口实现随机梯度下降算法的优化器
H
Hao Wang 已提交
9 10 11 12 13 14 15

.. math::
            \\param\_out=param-learning\_rate*grad\\


参数:
  - **learning_rate** (float|Variable) - 用于更新参数的学习率。可以是浮点值,也可以是具有一个浮点值作为数据元素的变量。
16
  - **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
17 18
  - **regularization** - 一个正则化器,例如 ``fluid.regularizer.L2DecayRegularizer`` 。
  - **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
H
Hao Wang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  
  
**代码示例**
 
.. code-block:: python
    
    import paddle
    import paddle.fluid as fluid
    import numpy as np
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)   
        
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


51 52 53

.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)

54
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
55

56 57 58
参数:
    - **loss** (Variable) – 需要最小化的损失值变量
    - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` 
59
    - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
60
    - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
61
    - **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
62

63
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
64

65
返回类型: tuple
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
**代码示例**
 
.. code-block:: python
    
    import paddle
    import paddle.fluid as fluid
    import numpy as np
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)   
        
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)
86

87 88 89 90 91 92 93 94
        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
H
Hao Wang 已提交
95 96 97



98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
.. py:method:: clear_gradients()

**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**


清除需要优化的参数的梯度。

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    with fluid.dygraph.guard():
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")
        optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                      parameter_list=linear.parameters())
        out = linear(a)
        out.backward()
        optimizer.minimize(out)
        optimizer.clear_gradients()


.. py:method:: current_step_lr()

**注意:**

  **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**

获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。

返回:当前步骤的学习率。

返回类型:float

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    import numpy as np

    # example1: LearningRateDecay is not used, return value is all the same
    with fluid.dygraph.guard():
        emb = fluid.dygraph.Embedding([10, 10])
        adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
        lr = adam.current_step_lr()
        print(lr) # 0.001

    # example2: PiecewiseDecay is used, return the step learning rate
    with fluid.dygraph.guard():
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = fluid.dygraph.nn.Linear(10, 10)
        inp = fluid.dygraph.to_variable(inp)
        out = linear(inp)
        loss = fluid.layers.reduce_mean(out)

        bd = [2, 4, 6, 8]
        value = [0.2, 0.4, 0.6, 0.8, 1.0]
        adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                           parameter_list=linear.parameters())

        # first step: learning rate is 0.2
        np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

        # learning rate for different steps
        ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
        for i in range(12):
            adam.minimize(loss)
            lr = adam.current_step_lr()
            np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
H
Hao Wang 已提交
174