tokenizing_ernie.py 10.0 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import sys
import os
import six
import re
import logging
import tempfile
M
Meiyim 已提交
26
from pathlib import Path
M
Meiyim 已提交
27
from functools import partial
W
Weiyue Su 已提交
28 29 30 31
if six.PY2:
    from pathlib2 import Path
else:
    from pathlib import Path
M
Meiyim 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44

from tqdm import tqdm
import numpy as np

from ernie.file_utils import _fetch_from_remote
import io

open = partial(io.open, encoding='utf8')

log = logging.getLogger(__name__)

_max_input_chars_per_word = 100

M
Meiyim 已提交
45

M
Meiyim 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def _wordpiece(token, vocab, unk_token, prefix='##', sentencepiece_prefix=''):
    """ wordpiece: helloworld => [hello, ##world] """
    chars = list(token)
    if len(chars) > _max_input_chars_per_word:
        return [unk_token], [(0, len(chars))]

    is_bad = False
    start = 0
    sub_tokens = []
    sub_pos = []
    while start < len(chars):
        end = len(chars)
        cur_substr = None
        while start < end:
            substr = "".join(chars[start:end])
            if start == 0:
                substr = sentencepiece_prefix + substr
            if start > 0:
                substr = prefix + substr
            if substr in vocab:
                cur_substr = substr
                break
            end -= 1
        if cur_substr is None:
            is_bad = True
            break
        sub_tokens.append(cur_substr)
        sub_pos.append((start, end))
        start = end
    if is_bad:
        return [unk_token], [(0, len(chars))]
    else:
        return sub_tokens, sub_pos


class ErnieTokenizer(object):
    bce = 'https://ernie-github.cdn.bcebos.com/'
    resource_map = {
        'ernie-1.0': bce + 'model-ernie1.0.1.tar.gz',
        'ernie-2.0-en': bce + 'model-ernie2.0-en.1.tar.gz',
M
Meiyim 已提交
86
        'ernie-2.0-large-en': bce + 'model-ernie2.0-large-en.1.tar.gz',
M
Meiyim 已提交
87
        'ernie-tiny': bce + 'model-ernie_tiny.1.tar.gz',
C
chenxuyi 已提交
88 89
        'ernie-gen-base-en': bce + 'model-ernie-gen-base-en.1.tar.gz',
        'ernie-gen-large-en': bce + 'model-ernie-gen-large-en.1.tar.gz',
M
Meiyim 已提交
90
    }
M
Meiyim 已提交
91

M
Meiyim 已提交
92
    @classmethod
M
Meiyim 已提交
93 94 95 96
    def from_pretrained(cls,
                        pretrain_dir_or_url,
                        force_download=False,
                        **kwargs):
M
Meiyim 已提交
97 98 99
        if pretrain_dir_or_url in cls.resource_map:
            url = cls.resource_map[pretrain_dir_or_url]
            log.info('get pretrain dir from %s' % url)
M
Meiyim 已提交
100 101
            pretrain_dir = _fetch_from_remote(
                url, force_download=force_download)
M
Meiyim 已提交
102
        else:
M
Meiyim 已提交
103 104 105 106
            log.info('pretrain dir %s not in %s, read from local' %
                     (pretrain_dir_or_url, repr(cls.resource_map)))
            pretrain_dir = pretrain_dir_or_url
        pretrain_dir = Path(pretrain_dir)
M
Meiyim 已提交
107
        if not pretrain_dir.exists():
M
Meiyim 已提交
108
            raise ValueError('pretrain dir not found: %s' % pretrain_dir)
M
Meiyim 已提交
109 110
        vocab_path = pretrain_dir / 'vocab.txt'
        if not vocab_path.exists():
M
Meiyim 已提交
111 112 113 114 115 116 117
            raise ValueError('no vocab file in pretrain dir: %s' %
                             pretrain_dir)
        vocab_dict = {
            j.strip().split('\t')[0]: i
            for i, j in enumerate(
                vocab_path.open(encoding='utf8').readlines())
        }
M
Meiyim 已提交
118 119 120
        t = cls(vocab_dict, **kwargs)
        return t

M
Meiyim 已提交
121 122 123 124 125 126 127 128 129 130 131 132
    def __init__(self,
                 vocab,
                 unk_token='[UNK]',
                 sep_token='[SEP]',
                 cls_token='[CLS]',
                 pad_token='[PAD]',
                 mask_token='[MASK]',
                 wordpiece_prefix='##',
                 sentencepiece_prefix='',
                 lower=True,
                 encoding='utf8',
                 special_token_list=[]):
M
Meiyim 已提交
133
        if not isinstance(vocab, dict):
M
Meiyim 已提交
134 135
            raise ValueError('expect `vocab` to be instance of dict, got %s' %
                             type(vocab))
M
Meiyim 已提交
136 137 138 139 140 141 142 143 144 145
        self.vocab = vocab
        self.lower = lower
        self.prefix = wordpiece_prefix
        self.sentencepiece_prefix = sentencepiece_prefix
        self.pad_id = self.vocab[pad_token]
        self.cls_id = cls_token and self.vocab[cls_token]
        self.sep_id = sep_token and self.vocab[sep_token]
        self.unk_id = unk_token and self.vocab[unk_token]
        self.mask_id = mask_token and self.vocab[mask_token]
        self.unk_token = unk_token
M
Meiyim 已提交
146 147 148
        special_tokens = {
            pad_token, cls_token, sep_token, unk_token, mask_token
        } | set(special_token_list)
M
Meiyim 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        pat_str = ''
        for t in special_tokens:
            if t is None:
                continue
            pat_str += '(%s)|' % re.escape(t)
        pat_str += r'([a-zA-Z0-9]+|\S)'
        log.debug('regex: %s' % pat_str)
        self.pat = re.compile(pat_str)
        self.encoding = encoding

    def tokenize(self, text):
        if len(text) == 0:
            return []
        if six.PY3 and not isinstance(text, six.string_types):
            text = text.decode(self.encoding)
        if six.PY2 and isinstance(text, str):
            text = text.decode(self.encoding)
M
Meiyim 已提交
166

M
Meiyim 已提交
167 168 169 170 171 172
        res = []
        for match in self.pat.finditer(text):
            match_group = match.group(0)
            if match.groups()[-1]:
                if self.lower:
                    match_group = match_group.lower()
M
Meiyim 已提交
173 174 175 176 177 178
                words, _ = _wordpiece(
                    match_group,
                    vocab=self.vocab,
                    unk_token=self.unk_token,
                    prefix=self.prefix,
                    sentencepiece_prefix=self.sentencepiece_prefix)
M
Meiyim 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
            else:
                words = [match_group]
            res += words
        return res

    def convert_tokens_to_ids(self, tokens):
        return [self.vocab.get(t, self.unk_id) for t in tokens]

    def truncate(self, id1, id2, seqlen):
        len1 = len(id1)
        len2 = len(id2)
        half = seqlen // 2
        if len1 > len2:
M
Meiyim 已提交
192 193
            len1_truncated, len2_truncated = max(half, seqlen - len2), min(
                half, len2)
M
Meiyim 已提交
194
        else:
M
Meiyim 已提交
195 196 197
            len1_truncated, len2_truncated = min(half, seqlen - len1), max(
                half, seqlen - len1)
        return id1[:len1_truncated], id2[:len2_truncated]
M
Meiyim 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211

    def build_for_ernie(self, text_id, pair_id=[]):
        """build sentence type id, add [CLS] [SEP]"""
        text_id_type = np.zeros_like(text_id, dtype=np.int64)
        ret_id = np.concatenate([[self.cls_id], text_id, [self.sep_id]], 0)
        ret_id_type = np.concatenate([[0], text_id_type, [0]], 0)

        if len(pair_id):
            pair_id_type = np.ones_like(pair_id, dtype=np.int64)
            ret_id = np.concatenate([ret_id, pair_id, [self.sep_id]], 0)
            ret_id_type = np.concatenate([ret_id_type, pair_id_type, [1]], 0)
        return ret_id, ret_id_type

    def encode(self, text, pair=None, truncate_to=None):
M
Meiyim 已提交
212 213
        text_id = np.array(
            self.convert_tokens_to_ids(self.tokenize(text)), dtype=np.int64)
M
Meiyim 已提交
214 215
        text_id_type = np.zeros_like(text_id, dtype=np.int64)
        if pair is not None:
M
Meiyim 已提交
216 217 218
            pair_id = np.array(
                self.convert_tokens_to_ids(self.tokenize(pair)),
                dtype=np.int64)
M
Meiyim 已提交
219 220 221
        else:
            pair_id = []
        if truncate_to is not None:
M
Meiyim 已提交
222 223
            text_id, pair_id = self.truncate(text_id, [] if pair_id is None
                                             else pair_id, truncate_to)
M
Meiyim 已提交
224 225 226 227 228 229 230 231

        ret_id, ret_id_type = self.build_for_ernie(text_id, pair_id)
        return ret_id, ret_id_type


class ErnieTinyTokenizer(ErnieTokenizer):
    bce = 'https://ernie-github.cdn.bcebos.com/'
    resource_map = {'ernie-tiny': bce + 'model-ernie_tiny.1.tar.gz'}
M
Meiyim 已提交
232

M
Meiyim 已提交
233
    @classmethod
M
Meiyim 已提交
234 235 236 237
    def from_pretrained(cls,
                        pretrain_dir_or_url,
                        force_download=False,
                        **kwargs):
M
Meiyim 已提交
238 239 240 241 242 243
        if pretrain_dir_or_url in cls.resource_map:
            url = cls.resource_map[pretrain_dir_or_url]
            log.info('get pretrain dir from %s' % url)
            pretrain_dir = _fetch_from_remote(url, force_download)
        else:
            log.info('pretrain dir %s not in %s, read from local' % (pretrain_dir_or_url, repr(cls.resource_map)))
W
Weiyue Su 已提交
244
            pretrain_dir = Path(pretrain_dir_or_url)
M
Meiyim 已提交
245
        if not pretrain_dir.exists():
M
Meiyim 已提交
246
            raise ValueError('pretrain dir not found: %s' % pretrain_dir)
M
Meiyim 已提交
247 248
        vocab_path = pretrain_dir / 'vocab.txt'
        sp_model_path = pretrain_dir / 'subword/spm_cased_simp_sampled.model'
M
Meiyim 已提交
249

M
Meiyim 已提交
250
        if not vocab_path.exists():
M
Meiyim 已提交
251 252 253 254 255 256 257
            raise ValueError('no vocab file in pretrain dir: %s' %
                             pretrain_dir)
        vocab_dict = {
            j.strip().split('\t')[0]: i
            for i, j in enumerate(
                vocab_path.open(encoding='utf8').readlines())
        }
M
Meiyim 已提交
258 259 260 261 262 263 264

        t = cls(vocab_dict, sp_model_path, **kwargs)
        return t

    def __init__(self, vocab, sp_model_path, **kwargs):
        super(ErnieTinyTokenizer, self).__init__(vocab, **kwargs)
        import sentencepiece as spm
M
Meiyim 已提交
265
        import jieba as jb
M
Meiyim 已提交
266 267 268
        self.sp_model = spm.SentencePieceProcessor()
        self.window_size = 5
        self.sp_model.Load(sp_model_path)
M
Meiyim 已提交
269
        self.jb = jb
M
Meiyim 已提交
270 271

    def cut(self, sentence):
M
Meiyim 已提交
272
        return self.jb.cut(sentence)
M
Meiyim 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285

    def tokenize(self, text):
        if len(text) == 0:
            return []
        if not isinstance(text, six.string_types):
            text = text.decode(self.encoding)
        if self.lower:
            text = text.lower()

        res = []
        for match in self.cut(text):
            res += self.sp_model.EncodeAsPieces(match)
        return res