tokenizing_ernie.py 9.2 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import sys
import os
import six
import re
import logging
import tempfile
from functools import partial

from tqdm import tqdm
import numpy as np

from ernie.file_utils import _fetch_from_remote
import io

open = partial(io.open, encoding='utf8')

log = logging.getLogger(__name__)

_max_input_chars_per_word = 100

def _wordpiece(token, vocab, unk_token, prefix='##', sentencepiece_prefix=''):
    """ wordpiece: helloworld => [hello, ##world] """
    chars = list(token)
    if len(chars) > _max_input_chars_per_word:
        return [unk_token], [(0, len(chars))]

    is_bad = False
    start = 0
    sub_tokens = []
    sub_pos = []
    while start < len(chars):
        end = len(chars)
        cur_substr = None
        while start < end:
            substr = "".join(chars[start:end])
            if start == 0:
                substr = sentencepiece_prefix + substr
            if start > 0:
                substr = prefix + substr
            if substr in vocab:
                cur_substr = substr
                break
            end -= 1
        if cur_substr is None:
            is_bad = True
            break
        sub_tokens.append(cur_substr)
        sub_pos.append((start, end))
        start = end
    if is_bad:
        return [unk_token], [(0, len(chars))]
    else:
        return sub_tokens, sub_pos


class ErnieTokenizer(object):
    bce = 'https://ernie-github.cdn.bcebos.com/'
    resource_map = {
        'ernie-1.0': bce + 'model-ernie1.0.1.tar.gz',
        'ernie-2.0-en': bce + 'model-ernie2.0-en.1.tar.gz',
        'ernie-2.0-large-en':  bce + 'model-ernie2.0-large-en.1.tar.gz',
        'ernie-tiny': bce + 'model-ernie_tiny.1.tar.gz',
C
chenxuyi 已提交
82 83
        'ernie-gen-base-en': bce + 'model-ernie-gen-base-en.1.tar.gz',
        'ernie-gen-large-en': bce + 'model-ernie-gen-large-en.1.tar.gz',
M
Meiyim 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    }
    @classmethod
    def from_pretrained(cls, pretrain_dir_or_url, force_download=False, **kwargs):
        if pretrain_dir_or_url in cls.resource_map:
            url = cls.resource_map[pretrain_dir_or_url]
            log.info('get pretrain dir from %s' % url)
            pretrain_dir = _fetch_from_remote(url, force_download=force_download)
        else:
            log.info('pretrain dir %s not in %s, read from local' % (pretrain_dir_or_url, repr(cls.resource_map)))
            pretrain_dir = pretrain_dir_or_url
        if not os.path.exists(pretrain_dir):
            raise ValueError('pretrain dir not found: %s' % pretrain_dir)
        vocab_path = os.path.join(pretrain_dir, 'vocab.txt')
        if not os.path.exists(vocab_path):
            raise ValueError('no vocab file in pretrain dir: %s' % pretrain_dir)
        vocab_dict = {j.strip().split('\t')[0]: i for i, j in enumerate(open(vocab_path).readlines())}
        t = cls(vocab_dict, **kwargs)
        return t

    def __init__(self, 
            vocab, 
            unk_token='[UNK]', 
            sep_token='[SEP]', 
            cls_token='[CLS]', 
            pad_token='[PAD]', 
            mask_token='[MASK]',
            wordpiece_prefix='##', 
            sentencepiece_prefix='', 
            lower=True, 
            encoding='utf8', 
            special_token_list=[]):
        if not isinstance(vocab, dict):
            raise ValueError('expect `vocab` to be instance of dict, got %s' % type(vocab))
        self.vocab = vocab
        self.lower = lower
        self.prefix = wordpiece_prefix
        self.sentencepiece_prefix = sentencepiece_prefix
        self.pad_id = self.vocab[pad_token]
        self.cls_id = cls_token and self.vocab[cls_token]
        self.sep_id = sep_token and self.vocab[sep_token]
        self.unk_id = unk_token and self.vocab[unk_token]
        self.mask_id = mask_token and self.vocab[mask_token]
        self.unk_token = unk_token
        special_tokens = {pad_token, cls_token, sep_token, unk_token, mask_token} | set(special_token_list)
        pat_str = ''
        for t in special_tokens:
            if t is None:
                continue
            pat_str += '(%s)|' % re.escape(t)
        pat_str += r'([a-zA-Z0-9]+|\S)'
        log.debug('regex: %s' % pat_str)
        self.pat = re.compile(pat_str)
        self.encoding = encoding

    def tokenize(self, text):
        if len(text) == 0:
            return []
        if six.PY3 and not isinstance(text, six.string_types):
            text = text.decode(self.encoding)
        if six.PY2 and isinstance(text, str):
            text = text.decode(self.encoding)
            
        res = []
        for match in self.pat.finditer(text):
            match_group = match.group(0)
            if match.groups()[-1]:
                if self.lower:
                    match_group = match_group.lower()
                words, _ = _wordpiece(match_group, vocab=self.vocab, unk_token=self.unk_token, prefix=self.prefix, sentencepiece_prefix=self.sentencepiece_prefix)
            else:
                words = [match_group]
            res += words
        return res

    def convert_tokens_to_ids(self, tokens):
        return [self.vocab.get(t, self.unk_id) for t in tokens]

    def truncate(self, id1, id2, seqlen):
        len1 = len(id1)
        len2 = len(id2)
        half = seqlen // 2
        if len1 > len2:
            len1_truncated, len2_truncated = max(half, seqlen - len2), min(half, len2)
        else:
            len1_truncated, len2_truncated = min(half, seqlen - len1), max(half, seqlen - len1)
        return id1[: len1_truncated], id2[: len2_truncated]

    def build_for_ernie(self, text_id, pair_id=[]):
        """build sentence type id, add [CLS] [SEP]"""
        text_id_type = np.zeros_like(text_id, dtype=np.int64)
        ret_id = np.concatenate([[self.cls_id], text_id, [self.sep_id]], 0)
        ret_id_type = np.concatenate([[0], text_id_type, [0]], 0)

        if len(pair_id):
            pair_id_type = np.ones_like(pair_id, dtype=np.int64)
            ret_id = np.concatenate([ret_id, pair_id, [self.sep_id]], 0)
            ret_id_type = np.concatenate([ret_id_type, pair_id_type, [1]], 0)
        return ret_id, ret_id_type

    def encode(self, text, pair=None, truncate_to=None):
        text_id = np.array(self.convert_tokens_to_ids(self.tokenize(text)), dtype=np.int64)
        text_id_type = np.zeros_like(text_id, dtype=np.int64)
        if pair is not None:
            pair_id = np.array(self.convert_tokens_to_ids(self.tokenize(pair)), dtype=np.int64)
        else:
            pair_id = []
        if truncate_to is not None:
            text_id, pair_id = self.truncate(text_id, [] if pair_id is None else pair_id, truncate_to)

        ret_id, ret_id_type = self.build_for_ernie(text_id, pair_id)
        return ret_id, ret_id_type



class ErnieTinyTokenizer(ErnieTokenizer):
    bce = 'https://ernie-github.cdn.bcebos.com/'
    resource_map = {'ernie-tiny': bce + 'model-ernie_tiny.1.tar.gz'}
    @classmethod
    def from_pretrained(cls, pretrain_dir_or_url, force_download=False, **kwargs):
        if pretrain_dir_or_url in cls.resource_map:
            url = cls.resource_map[pretrain_dir_or_url]
            log.info('get pretrain dir from %s' % url)
            pretrain_dir = _fetch_from_remote(url, force_download)
        else:
            log.info('pretrain dir %s not in %s, read from local' % (pretrain_dir_or_url, repr(cls.resource_map)))
            pretrain_dir = pretrain_dir_or_url
        if not os.path.exists(pretrain_dir):
            raise ValueError('pretrain dir not found: %s' % pretrain_dir)
        vocab_path = os.path.join(pretrain_dir, 'vocab.txt')
        sp_model_path = os.path.join(pretrain_dir, 'subword/spm_cased_simp_sampled.model')

        if not os.path.exists(vocab_path):
            raise ValueError('no vocab file in pretrain dir: %s' % pretrain_dir)
        vocab_dict = {j.strip().split('\t')[0]: i for i, j in enumerate(open(vocab_path).readlines())}

        t = cls(vocab_dict, sp_model_path, **kwargs)
        return t

    def __init__(self, vocab, sp_model_path, **kwargs):
        super(ErnieTinyTokenizer, self).__init__(vocab, **kwargs)
        import sentencepiece as spm
M
Meiyim 已提交
225
        import jieba as jb
M
Meiyim 已提交
226 227 228
        self.sp_model = spm.SentencePieceProcessor()
        self.window_size = 5
        self.sp_model.Load(sp_model_path)
M
Meiyim 已提交
229
        self.jb = jb
M
Meiyim 已提交
230 231

    def cut(self, sentence):
M
Meiyim 已提交
232
        return self.jb.cut(sentence)
M
Meiyim 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246

    def tokenize(self, text):
        if len(text) == 0:
            return []
        if not isinstance(text, six.string_types):
            text = text.decode(self.encoding)
        if self.lower:
            text = text.lower()

        res = []
        for match in self.cut(text):
            res += self.sp_model.EncodeAsPieces(match)
        return res