run_classifier.py 19.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import numpy as np
T
tianxin 已提交
24
import subprocess
Y
Yibing Liu 已提交
25 26 27 28 29 30 31 32 33
import multiprocessing

import paddle
import paddle.fluid as fluid

import reader.cls as reader
from model.bert import BertConfig
from model.classifier import create_model
from optimization import optimization
Y
Yibing Liu 已提交
34
from utils.args import ArgumentGroup, print_arguments, check_cuda
Y
Yibing Liu 已提交
35
from utils.init import init_pretraining_params, init_checkpoint
Z
zhengya01 已提交
36
from utils.cards import get_cards
C
chengduozh 已提交
37 38
import dist_utils

C
chengduozh 已提交
39
num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
Y
Yibing Liu 已提交
40 41 42 43 44 45 46 47 48 49 50 51

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
52
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
Y
Yibing Liu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling",      float,  1.0,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",      str,  None,  "Path to training data.")
data_g.add_arg("vocab_path",    str,  None,  "Vocabulary path.")
data_g.add_arg("max_seq_len",   int,  512,   "Number of words of the longest seqence.")
73
data_g.add_arg("batch_size",    int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
Y
Yibing Liu 已提交
74 75 76 77 78
data_g.add_arg("in_tokens",     bool, False,
              "If set, the batch size will be the maximum number of tokens in one batch. "
              "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
79
data_g.add_arg("random_seed",   int,  0,     "Random seed.")
Y
Yibing Liu 已提交
80 81 82 83

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
C
chengduozh 已提交
84
run_type_g.add_arg("shuffle",                      bool,   True,  "")
85
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
Y
Yibing Liu 已提交
86 87 88 89 90 91
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")

Z
zhengya01 已提交
92 93
parser.add_argument("--enable_ce", action='store_true', help="The flag indicating whether to run the task for continuous evaluation.")

Y
Yibing Liu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
args = parser.parse_args()
# yapf: enable.


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
          (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
           np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))

C
chengduozh 已提交
117
def get_device_num():
C
chengduozh 已提交
118
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
C
chengduozh 已提交
119
    if num_trainers > 1 : return 1
C
chengduozh 已提交
120
    visible_device = os.environ.get('CUDA_VISIBLE_DEVICES', None)
C
chengduozh 已提交
121 122 123 124 125 126
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi','-L']).decode().count('\n')
    return device_num

Y
Yibing Liu 已提交
127 128 129 130 131 132
def main(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
C
chengduozh 已提交
133
        dev_count = get_device_num()
Y
Yibing Liu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

C
chengduozh 已提交
159
    train_program = fluid.Program()
Y
Yibing Liu 已提交
160 161 162
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed
C
chengduozh 已提交
163
        train_program.random_seed = args.random_seed
Y
Yibing Liu 已提交
164 165

    if args.do_train:
C
chengduozh 已提交
166 167 168 169
        # NOTE: If num_trainers > 1, the shuffle_seed must be set, because
        # the order of batch data generated by reader
        # must be the same in the respective processes.
        shuffle_seed = 1 if num_trainers > 1 else None
Y
Yibing Liu 已提交
170 171 172 173
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch,
174
            dev_count=dev_count,
C
chengduozh 已提交
175 176
            shuffle=args.shuffle,
            shuffle_seed=shuffle_seed)
Y
Yibing Liu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        num_train_examples = processor.get_num_examples(phase='train')

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='train_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)
                scheduled_lr = optimization(
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    loss_scaling=args.loss_scaling)

                fluid.memory_optimize(
                    input_program=train_program,
                    skip_opt_set=[
                        loss.name, probs.name, accuracy.name, num_seqs.name
                    ])

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='test_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
271
        exec_strategy.use_experimental_executor = args.use_fast_executor
Y
Yibing Liu 已提交
272
        exec_strategy.num_threads = dev_count
273
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
C
chengduozh 已提交
274
        build_strategy = fluid.BuildStrategy()
C
chengduozh 已提交
275

C
chengduozh 已提交
276
        if args.use_cuda and num_trainers > 1:
C
chengduozh 已提交
277
            assert shuffle_seed is not None
C
chengduozh 已提交
278 279 280
            dist_utils.prepare_for_multi_process(exe, build_strategy, train_program)
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(
                  train_data_generator)
C
chengduozh 已提交
281

Y
Yibing Liu 已提交
282 283 284 285
        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=loss.name,
            exec_strategy=exec_strategy,
C
chengduozh 已提交
286
            build_strategy = build_strategy,
Y
Yibing Liu 已提交
287
            main_program=train_program)
Y
Yibing Liu 已提交
288

Y
Yibing Liu 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            main_program=test_prog,
            share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
C
chengduozh 已提交
304
        throughput = []
Z
zhengya01 已提交
305
        ce_info = []
Y
Yibing Liu 已提交
306 307
        while True:
            try:
C
chengduozh 已提交
308
                # steps += 1
Y
Yibing Liu 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        fetch_list = [loss.name, accuracy.name, num_seqs.name]
                    else:
                        fetch_list = [
                            loss.name, accuracy.name, scheduled_lr.name,
                            num_seqs.name
                        ]
                else:
                    fetch_list = []

                outputs = train_exe.run(fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        np_loss, np_acc, np_num_seqs = outputs
                    else:
                        np_loss, np_acc, np_lr, np_num_seqs = outputs

                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            np_lr[0]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = processor.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin
C
chengduozh 已提交
344 345 346

                    log_record = "epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}".format(
                           current_epoch, current_example, num_train_examples,
Y
Yibing Liu 已提交
347
                           steps, np.sum(total_cost) / np.sum(total_num_seqs),
C
chengduozh 已提交
348
                           np.sum(total_acc) / np.sum(total_num_seqs))
Z
zhengya01 已提交
349
                    ce_info.append([np.sum(total_cost) / np.sum(total_num_seqs), np.sum(total_acc) / np.sum(total_num_seqs), used_time])
C
chengduozh 已提交
350 351 352 353 354 355
                    if steps > 0 :
                        throughput.append( args.skip_steps / used_time)
                        log_record = log_record + ", speed: %f steps/s" % (args.skip_steps / used_time)
                        print(log_record)
                    else:
                        print(log_record)
Y
Yibing Liu 已提交
356 357 358
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

C
chengduozh 已提交
359
                steps += 1
Y
Yibing Liu 已提交
360 361 362 363 364 365
                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
C
chengduozh 已提交
366 367
                    print("Average throughtput: %s" % (np.average(throughput)))
                    throughput = []
Y
Yibing Liu 已提交
368 369 370 371 372 373 374
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
375
                                dev_count=1,
Y
Yibing Liu 已提交
376 377 378 379 380 381 382 383 384 385 386
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")
                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='test',
                                epoch=1,
387
                                dev_count=1,
Y
Yibing Liu 已提交
388 389 390 391 392 393 394 395 396
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "test")
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break
Z
zhengya01 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        if args.enable_ce:
            card_num = get_cards()
            ce_cost = 0
            ce_acc = 0
            ce_time = 0
            try:
                ce_cost = ce_info[-2][0]
                ce_acc = ce_info[-2][1]
                ce_time = ce_info[-2][2]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_%s_card%s\t%s" %
                (args.task_name, card_num, ce_time))
            print("kpis\ttrain_cost_%s_card%s\t%f" %
                (args.task_name, card_num, ce_cost))
            print("kpis\ttrain_acc_%s_card%s\t%f" %
                (args.task_name, card_num, ce_acc))

Y
Yibing Liu 已提交
415 416 417 418 419

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
420
                batch_size=args.batch_size, phase='dev', epoch=1, dev_count=1,
Y
Yibing Liu 已提交
421 422 423 424 425 426 427 428 429 430 431 432
                shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
                batch_size=args.batch_size,
                phase='test',
                epoch=1,
433
                dev_count=1,
Y
Yibing Liu 已提交
434 435 436 437 438 439 440 441
                shuffle=False))
        print("Final test result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "test")


if __name__ == '__main__':
    print_arguments(args)
Y
Yibing Liu 已提交
442
    check_cuda(args.use_cuda)
Y
Yibing Liu 已提交
443
    main(args)