Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
ERNIE
提交
3a543ca8
E
ERNIE
项目概览
PaddlePaddle
/
ERNIE
大约 1 年 前同步成功
通知
109
Star
5997
Fork
1270
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
29
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
E
ERNIE
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
29
Issue
29
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3a543ca8
编写于
5月 05, 2019
作者:
C
chengduozh
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bert benchmark script
上级
92f5f78f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
22 addition
and
10 deletion
+22
-10
BERT/run_classifier.py
BERT/run_classifier.py
+22
-10
未找到文件。
BERT/run_classifier.py
浏览文件 @
3a543ca8
...
...
@@ -76,6 +76,7 @@ data_g.add_arg("random_seed", int, 0, "Random seed.")
run_type_g
=
ArgumentGroup
(
parser
,
"run_type"
,
"running type options."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
True
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"use_fast_executor"
,
bool
,
False
,
"If set, use fast parallel executor (in experiment)."
)
run_type_g
.
add_arg
(
"shuffle"
,
bool
,
True
,
""
)
run_type_g
.
add_arg
(
"num_iteration_per_drop_scope"
,
int
,
1
,
"Ihe iteration intervals to clean up temporary variables."
)
run_type_g
.
add_arg
(
"task_name"
,
str
,
None
,
"The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}."
)
...
...
@@ -139,16 +140,18 @@ def main(args):
raise
ValueError
(
"For args `do_train`, `do_val` and `do_test`, at "
"least one of them must be True."
)
train_program
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
if
args
.
random_seed
is
not
None
:
startup_prog
.
random_seed
=
args
.
random_seed
train_program
.
random_seed
=
args
.
random_seed
if
args
.
do_train
:
train_data_generator
=
processor
.
data_generator
(
batch_size
=
args
.
batch_size
,
phase
=
'train'
,
epoch
=
args
.
epoch
,
shuffle
=
Tru
e
)
shuffle
=
args
.
shuffl
e
)
num_train_examples
=
processor
.
get_num_examples
(
phase
=
'train'
)
...
...
@@ -164,8 +167,6 @@ def main(args):
print
(
"Max train steps: %d"
%
max_train_steps
)
print
(
"Num warmup steps: %d"
%
warmup_steps
)
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
train_pyreader
,
loss
,
probs
,
accuracy
,
num_seqs
=
create_model
(
...
...
@@ -248,11 +249,13 @@ def main(args):
exec_strategy
.
use_experimental_executor
=
args
.
use_fast_executor
exec_strategy
.
num_threads
=
dev_count
exec_strategy
.
num_iteration_per_drop_scope
=
args
.
num_iteration_per_drop_scope
build_strategy
=
fluid
.
BuildStrategy
()
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_cuda
,
loss_name
=
loss
.
name
,
exec_strategy
=
exec_strategy
,
build_strategy
=
build_strategy
,
main_program
=
train_program
)
train_pyreader
.
decorate_tensor_provider
(
train_data_generator
)
...
...
@@ -270,9 +273,10 @@ def main(args):
steps
=
0
total_cost
,
total_acc
,
total_num_seqs
=
[],
[],
[]
time_begin
=
time
.
time
()
throughput
=
[]
while
True
:
try
:
steps
+=
1
#
steps += 1
if
steps
%
args
.
skip_steps
==
0
:
if
warmup_steps
<=
0
:
fetch_list
=
[
loss
.
name
,
accuracy
.
name
,
num_seqs
.
name
]
...
...
@@ -308,21 +312,29 @@ def main(args):
)
time_end
=
time
.
time
()
used_time
=
time_end
-
time_begin
print
(
"epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
"ave acc: %f, speed: %f steps/s"
%
(
current_epoch
,
current_example
,
num_train_examples
,
log_record
=
"epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}"
.
format
(
current_epoch
,
current_example
,
num_train_examples
,
steps
,
np
.
sum
(
total_cost
)
/
np
.
sum
(
total_num_seqs
),
np
.
sum
(
total_acc
)
/
np
.
sum
(
total_num_seqs
),
args
.
skip_steps
/
used_time
))
np
.
sum
(
total_acc
)
/
np
.
sum
(
total_num_seqs
))
if
steps
>
0
:
throughput
.
append
(
args
.
skip_steps
/
used_time
)
log_record
=
log_record
+
", speed: %f steps/s"
%
(
args
.
skip_steps
/
used_time
)
print
(
log_record
)
else
:
print
(
log_record
)
total_cost
,
total_acc
,
total_num_seqs
=
[],
[],
[]
time_begin
=
time
.
time
()
steps
+=
1
if
steps
%
args
.
save_steps
==
0
:
save_path
=
os
.
path
.
join
(
args
.
checkpoints
,
"step_"
+
str
(
steps
))
fluid
.
io
.
save_persistables
(
exe
,
save_path
,
train_program
)
if
steps
%
args
.
validation_steps
==
0
:
print
(
"Average throughtput: %s"
%
(
np
.
average
(
throughput
)))
throughput
=
[]
# evaluate dev set
if
args
.
do_val
:
test_pyreader
.
decorate_tensor_provider
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录