tokenization.py 17.9 KB
Newer Older
O
oyjxer 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python2, python3
# coding=utf-8
"""Tokenization classes."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import re
import unicodedata
import six
from six.moves import range
#import tensorflow as tf
import sentencepiece as spm

SPIECE_UNDERLINE = u"▁".encode("utf-8")


def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
  """Checks whether the casing config is consistent with the checkpoint name."""

  # The casing has to be passed in by the user and there is no explicit check
  # as to whether it matches the checkpoint. The casing information probably
  # should have been stored in the bert_config.json file, but it's not, so
  # we have to heuristically detect it to validate.

  if not init_checkpoint:
    return

  m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt",
               six.ensure_str(init_checkpoint))
  if m is None:
    return

  model_name = m.group(1)

  lower_models = [
      "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
      "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
  ]

  cased_models = [
      "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
      "multi_cased_L-12_H-768_A-12"
  ]

  is_bad_config = False
  if model_name in lower_models and not do_lower_case:
    is_bad_config = True
    actual_flag = "False"
    case_name = "lowercased"
    opposite_flag = "True"

  if model_name in cased_models and do_lower_case:
    is_bad_config = True
    actual_flag = "True"
    case_name = "cased"
    opposite_flag = "False"

  if is_bad_config:
    raise ValueError(
        "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
        "However, `%s` seems to be a %s model, so you "
        "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
        "how the model was pre-training. If this error is wrong, please "
        "just comment out this check." % (actual_flag, init_checkpoint,
                                          model_name, case_name, opposite_flag))

def clean_text(text):
  """Performs invalid character removal and whitespace cleanup on text."""
  text = text.replace(u"“", u'"')\
          .replace(u'”', u'"')\
          .replace(u'‘', "'")\
          .replace(u'’', u"'")\
          .replace(u'—', u'-')

  output = []
  for char in text:
      if _is_control(char):
          continue
      if _is_whitespace(char):
          output.append(" ")
      else:
          output.append(char)
  return "".join(output)



def preprocess_text(inputs, remove_space=True, lower=False):
  """preprocess data by removing extra space and normalize data."""

  outputs = inputs
  if remove_space:
    outputs = " ".join(inputs.strip().split())

  if six.PY2 and isinstance(outputs, str):
    try:
      outputs = six.ensure_text(outputs, "utf-8")
    except UnicodeDecodeError:
      outputs = six.ensure_text(outputs, "latin-1")

  outputs = unicodedata.normalize("NFKD", outputs)
  outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
  if lower:
    outputs = outputs.lower()

  return outputs


def encode_pieces(sp_model, text, return_unicode=True, sample=False):
  """turn sentences into word pieces."""

  # liujiaxiang: add for ernie-albert, mainly consider for “/”/‘/’/— causing too many unk
  text = clean_text(text)

  if six.PY2 and isinstance(text, six.text_type):
    text = six.ensure_binary(text, "utf-8")

  if not sample:
    pieces = sp_model.EncodeAsPieces(text)
  else:
    pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1)

  new_pieces = []
  for piece in pieces:
    piece = printable_text(piece)
    if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit():
      cur_pieces = sp_model.EncodeAsPieces(
          six.ensure_binary(piece[:-1]).replace(SPIECE_UNDERLINE, b""))
      if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
        if len(cur_pieces[0]) == 1:
          cur_pieces = cur_pieces[1:]
        else:
          cur_pieces[0] = cur_pieces[0][1:]
      cur_pieces.append(piece[-1])
      new_pieces.extend(cur_pieces)
    else:
      new_pieces.append(piece)

  # note(zhiliny): convert back to unicode for py2
  if six.PY2 and return_unicode:
    ret_pieces = []
    for piece in new_pieces:
      if isinstance(piece, str):
        piece = six.ensure_text(piece, "utf-8")
      ret_pieces.append(piece)
    new_pieces = ret_pieces

  return new_pieces


def encode_ids(sp_model, text, sample=False):

  pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample)
  ids = [sp_model.PieceToId(piece) for piece in pieces]
  return ids


def convert_to_unicode(text):
  """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
  if six.PY3:
    if isinstance(text, str):
      return text
    elif isinstance(text, bytes):
      return six.ensure_text(text, "utf-8", "ignore")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  elif six.PY2:
    if isinstance(text, str):
      return six.ensure_text(text, "utf-8", "ignore")
    elif isinstance(text, six.text_type):
      return text
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  else:
    raise ValueError("Not running on Python2 or Python 3?")


def printable_text(text):
  """Returns text encoded in a way suitable for print or `tf.logging`."""

  # These functions want `str` for both Python2 and Python3, but in one case
  # it's a Unicode string and in the other it's a byte string.
  if six.PY3:
    if isinstance(text, str):
      return text
    elif isinstance(text, bytes):
      return six.ensure_text(text, "utf-8", "ignore")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  elif six.PY2:
    if isinstance(text, str):
      return text
    elif isinstance(text, six.text_type):
      return six.ensure_binary(text, "utf-8")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  else:
    raise ValueError("Not running on Python2 or Python 3?")


#def load_vocab(vocab_file):
#  """Loads a vocabulary file into a dictionary."""
#  vocab = collections.OrderedDict()
#  with tf.gfile.GFile(vocab_file, "r") as reader:
#    while True:
#      token = convert_to_unicode(reader.readline())
#      if not token:
#        break
#      token = token.strip().split()[0]
#      if token not in vocab:
#        vocab[token] = len(vocab)
#  return vocab
def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    fin = open(vocab_file)
    for num, line in enumerate(fin):
        items = convert_to_unicode(line.strip()).split("\t")
        if len(items) > 2:
            break
        token = items[0]
        index = items[1] if len(items) == 2 else num
        token = token.strip()
        vocab[token] = int(index)
    return vocab


def convert_by_vocab(vocab, items):
  """Converts a sequence of [tokens|ids] using the vocab."""
  output = []
  for item in items:
    output.append(vocab[item])
  return output


def convert_tokens_to_ids(vocab, tokens):
  return convert_by_vocab(vocab, tokens)


def convert_ids_to_tokens(inv_vocab, ids):
  return convert_by_vocab(inv_vocab, ids)


def whitespace_tokenize(text):
  """Runs basic whitespace cleaning and splitting on a piece of text."""
  text = text.strip()
  if not text:
    return []
  tokens = text.split()
  return tokens


class FullTokenizer(object):
  """Runs end-to-end tokenziation."""

  def __init__(self, vocab_file, do_lower_case=True, model_file='./30k-clean.model'):
    self.vocab = None
    self.sp_model = None
    if model_file:
      self.sp_model = spm.SentencePieceProcessor()
      #tf.logging.info("loading sentence piece model")
      self.sp_model.Load(model_file)
      # Note(mingdachen): For the purpose of consisent API, we are
      # generating a vocabulary for the sentence piece tokenizer.
      #self.vocab = {self.sp_model.IdToPiece(i): i for i
      #              in range(self.sp_model.GetPieceSize())}
      self.vocab = load_vocab(vocab_file)
     # import pdb; pdb.set_trace()
    else:
      #self.vocab = load_vocab(vocab_file)
      #self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
      #self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
      # (liujiaxiang) comment useless code for a better diff code
      raise ValueError('albert use spm by default')
    self.inv_vocab = {v: k for k, v in self.vocab.items()}

  def tokenize(self, text):
    if self.sp_model:
      split_tokens = encode_pieces(self.sp_model, text, return_unicode=False)
    else:
      #split_tokens = []
      #for token in self.basic_tokenizer.tokenize(text):
      #  for sub_token in self.wordpiece_tokenizer.tokenize(token):
      #    split_tokens.append(sub_token)
      # (liujiaxiang) comment useless code for a better diff code
      raise ValueError('albert use spm by default')

    return split_tokens


  def tokenize_for_pretrain(self, tok_list):
    import tok as tok_protocol
    text = " ".join([t.token for t in tok_list])

    #split_tokens = encode_pieces(self.sp_model, text, return_unicode=True)
    split_tokens = encode_pieces(self.sp_model, text, return_unicode=False)
    ids = self.convert_tokens_to_ids(split_tokens)

    # +1 for head _ : 'hello world' -> ['_hello', '_world']

    if not (len(preprocess_text(''.join(split_tokens))) == len(text) + 1):
      return None

    if len(split_tokens) != len(ids):
      return None

    sent_piece_tokens = []
    i = 0
    position_to_nth = self.inverse_index_str("_" + text)
    for t, id in zip(split_tokens, ids):
      t = t.decode('utf8')
      nth = position_to_nth[i]
      token = tok_list[nth]

      tok = tok_protocol.Tok()
      tok.token = t
      tok.id = id
      tok.bio = token.bio
      tok.origin = token.origin
      tok.appear = token.appear
      i += len(t)
      sent_piece_tokens.append(tok)

    return sent_piece_tokens

  def inverse_index_str(self, s):
    nth_tok = 0
    position_to_nth = {}
    for i, c in enumerate(s):
        if c == " ":
            nth_tok += 1
        position_to_nth[i] = nth_tok
    return position_to_nth

#  def convert_tokens_to_ids(self, tokens):
#    if self.sp_model:
#      #tf.logging.info("using sentence piece tokenzier.")
#      return [self.sp_model.PieceToId(
#          printable_text(token)) for token in tokens]
#    else:
#      return convert_by_vocab(self.vocab, tokens)

  def convert_tokens_to_ids(self, tokens):
    tokens_out = []
    for i in tokens:
      item = i
      if item in self.vocab:
        tokens_out.append(self.vocab[item])
      else:
        tokens_out.append(self.vocab['[UNK]'])
    return tokens_out


  def convert_ids_to_tokens(self, ids):
    if self.sp_model:
      #tf.logging.info("using sentence piece tokenzier.")
      return [self.sp_model.IdToPiece(id_) for id_ in ids]
    else:
      return convert_by_vocab(self.inv_vocab, ids)


class BasicTokenizer(object):
  """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

  def __init__(self, do_lower_case=True):
    """Constructs a BasicTokenizer.

    Args:
      do_lower_case: Whether to lower case the input.
    """
    self.do_lower_case = do_lower_case

  def tokenize(self, text):
    """Tokenizes a piece of text."""
    text = convert_to_unicode(text)
    text = self._clean_text(text)

    # This was added on November 1st, 2018 for the multilingual and Chinese
    # models. This is also applied to the English models now, but it doesn't
    # matter since the English models were not trained on any Chinese data
    # and generally don't have any Chinese data in them (there are Chinese
    # characters in the vocabulary because Wikipedia does have some Chinese
    # words in the English Wikipedia.).
    text = self._tokenize_chinese_chars(text)

    orig_tokens = whitespace_tokenize(text)
    split_tokens = []
    for token in orig_tokens:
      if self.do_lower_case:
        token = token.lower()
        token = self._run_strip_accents(token)
      split_tokens.extend(self._run_split_on_punc(token))

    output_tokens = whitespace_tokenize(" ".join(split_tokens))
    return output_tokens

  def _run_strip_accents(self, text):
    """Strips accents from a piece of text."""
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
      cat = unicodedata.category(char)
      if cat == "Mn":
        continue
      output.append(char)
    return "".join(output)

  def _run_split_on_punc(self, text):
    """Splits punctuation on a piece of text."""
    chars = list(text)
    i = 0
    start_new_word = True
    output = []
    while i < len(chars):
      char = chars[i]
      if _is_punctuation(char):
        output.append([char])
        start_new_word = True
      else:
        if start_new_word:
          output.append([])
        start_new_word = False
        output[-1].append(char)
      i += 1

    return ["".join(x) for x in output]

  def _tokenize_chinese_chars(self, text):
    """Adds whitespace around any CJK character."""
    output = []
    for char in text:
      cp = ord(char)
      if self._is_chinese_char(cp):
        output.append(" ")
        output.append(char)
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)

  def _is_chinese_char(self, cp):
    """Checks whether CP is the codepoint of a CJK character."""
    # This defines a "chinese character" as anything in the CJK Unicode block:
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
    #
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
    # despite its name. The modern Korean Hangul alphabet is a different block,
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
    # space-separated words, so they are not treated specially and handled
    # like the all of the other languages.
    if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
        (cp >= 0x3400 and cp <= 0x4DBF) or  #
        (cp >= 0x20000 and cp <= 0x2A6DF) or  #
        (cp >= 0x2A700 and cp <= 0x2B73F) or  #
        (cp >= 0x2B740 and cp <= 0x2B81F) or  #
        (cp >= 0x2B820 and cp <= 0x2CEAF) or
        (cp >= 0xF900 and cp <= 0xFAFF) or  #
        (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
      return True

    return False

  def _clean_text(self, text):
    """Performs invalid character removal and whitespace cleanup on text."""
    output = []
    for char in text:
      cp = ord(char)
      if cp == 0 or cp == 0xfffd or _is_control(char):
        continue
      if _is_whitespace(char):
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)


class WordpieceTokenizer(object):
  """Runs WordPiece tokenziation."""

  def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200):
    self.vocab = vocab
    self.unk_token = unk_token
    self.max_input_chars_per_word = max_input_chars_per_word

  def tokenize(self, text):
    """Tokenizes a piece of text into its word pieces.

    This uses a greedy longest-match-first algorithm to perform tokenization
    using the given vocabulary.

    For example:
      input = "unaffable"
      output = ["un", "##aff", "##able"]

    Args:
      text: A single token or whitespace separated tokens. This should have
        already been passed through `BasicTokenizer.

    Returns:
      A list of wordpiece tokens.
    """

    text = convert_to_unicode(text)

    output_tokens = []
    for token in whitespace_tokenize(text):
      chars = list(token)
      if len(chars) > self.max_input_chars_per_word:
        output_tokens.append(self.unk_token)
        continue

      is_bad = False
      start = 0
      sub_tokens = []
      while start < len(chars):
        end = len(chars)
        cur_substr = None
        while start < end:
          substr = "".join(chars[start:end])
          if start > 0:
            substr = "##" + six.ensure_str(substr)
          if substr in self.vocab:
            cur_substr = substr
            break
          end -= 1
        if cur_substr is None:
          is_bad = True
          break
        sub_tokens.append(cur_substr)
        start = end

      if is_bad:
        output_tokens.append(self.unk_token)
      else:
        output_tokens.extend(sub_tokens)
    return output_tokens


def _is_whitespace(char):
  """Checks whether `chars` is a whitespace character."""
  # \t, \n, and \r are technically control characters but we treat them
  # as whitespace since they are generally considered as such.
  if char == " " or char == "\t" or char == "\n" or char == "\r":
    return True
  cat = unicodedata.category(char)
  if cat == "Zs":
    return True
  return False


def _is_control(char):
  """Checks whether `chars` is a control character."""
  # These are technically control characters but we count them as whitespace
  # characters.
  if char == "\t" or char == "\n" or char == "\r":
    return False
  cat = unicodedata.category(char)
  if cat in ("Cc", "Cf"):
    return True
  return False


def _is_punctuation(char):
  """Checks whether `chars` is a punctuation character."""
  cp = ord(char)
  # We treat all non-letter/number ASCII as punctuation.
  # Characters such as "^", "$", and "`" are not in the Unicode
  # Punctuation class but we treat them as punctuation anyways, for
  # consistency.
  if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
    (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
    return True
  cat = unicodedata.category(char)
  if cat.startswith("P"):
    return True
  return False