# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 # coding=utf-8 """Tokenization classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re import unicodedata import six from six.moves import range #import tensorflow as tf import sentencepiece as spm SPIECE_UNDERLINE = u"▁".encode("utf-8") def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): """Checks whether the casing config is consistent with the checkpoint name.""" # The casing has to be passed in by the user and there is no explicit check # as to whether it matches the checkpoint. The casing information probably # should have been stored in the bert_config.json file, but it's not, so # we have to heuristically detect it to validate. if not init_checkpoint: return m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", six.ensure_str(init_checkpoint)) if m is None: return model_name = m.group(1) lower_models = [ "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" ] cased_models = [ "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", "multi_cased_L-12_H-768_A-12" ] is_bad_config = False if model_name in lower_models and not do_lower_case: is_bad_config = True actual_flag = "False" case_name = "lowercased" opposite_flag = "True" if model_name in cased_models and do_lower_case: is_bad_config = True actual_flag = "True" case_name = "cased" opposite_flag = "False" if is_bad_config: raise ValueError( "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " "However, `%s` seems to be a %s model, so you " "should pass in `--do_lower_case=%s` so that the fine-tuning matches " "how the model was pre-training. If this error is wrong, please " "just comment out this check." % (actual_flag, init_checkpoint, model_name, case_name, opposite_flag)) def clean_text(text): """Performs invalid character removal and whitespace cleanup on text.""" text = text.replace(u"“", u'"')\ .replace(u'”', u'"')\ .replace(u'‘', "'")\ .replace(u'’', u"'")\ .replace(u'—', u'-') output = [] for char in text: if _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) def preprocess_text(inputs, remove_space=True, lower=False): """preprocess data by removing extra space and normalize data.""" outputs = inputs if remove_space: outputs = " ".join(inputs.strip().split()) if six.PY2 and isinstance(outputs, str): try: outputs = six.ensure_text(outputs, "utf-8") except UnicodeDecodeError: outputs = six.ensure_text(outputs, "latin-1") outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def encode_pieces(sp_model, text, return_unicode=True, sample=False): """turn sentences into word pieces.""" # liujiaxiang: add for ernie-albert, mainly consider for “/”/‘/’/— causing too many unk text = clean_text(text) if six.PY2 and isinstance(text, six.text_type): text = six.ensure_binary(text, "utf-8") if not sample: pieces = sp_model.EncodeAsPieces(text) else: pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: piece = printable_text(piece) if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit(): cur_pieces = sp_model.EncodeAsPieces( six.ensure_binary(piece[:-1]).replace(SPIECE_UNDERLINE, b"")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) # note(zhiliny): convert back to unicode for py2 if six.PY2 and return_unicode: ret_pieces = [] for piece in new_pieces: if isinstance(piece, str): piece = six.ensure_text(piece, "utf-8") ret_pieces.append(piece) new_pieces = ret_pieces return new_pieces def encode_ids(sp_model, text, sample=False): pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample) ids = [sp_model.PieceToId(piece) for piece in pieces] return ids def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return six.ensure_text(text, "utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return six.ensure_text(text, "utf-8", "ignore") elif isinstance(text, six.text_type): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return six.ensure_text(text, "utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, six.text_type): return six.ensure_binary(text, "utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") #def load_vocab(vocab_file): # """Loads a vocabulary file into a dictionary.""" # vocab = collections.OrderedDict() # with tf.gfile.GFile(vocab_file, "r") as reader: # while True: # token = convert_to_unicode(reader.readline()) # if not token: # break # token = token.strip().split()[0] # if token not in vocab: # vocab[token] = len(vocab) # return vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() fin = open(vocab_file) for num, line in enumerate(fin): items = convert_to_unicode(line.strip()).split("\t") if len(items) > 2: break token = items[0] index = items[1] if len(items) == 2 else num token = token.strip() vocab[token] = int(index) return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item]) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True, model_file='./30k-clean.model'): self.vocab = None self.sp_model = None if model_file: self.sp_model = spm.SentencePieceProcessor() #tf.logging.info("loading sentence piece model") self.sp_model.Load(model_file) # Note(mingdachen): For the purpose of consisent API, we are # generating a vocabulary for the sentence piece tokenizer. #self.vocab = {self.sp_model.IdToPiece(i): i for i # in range(self.sp_model.GetPieceSize())} self.vocab = load_vocab(vocab_file) # import pdb; pdb.set_trace() else: #self.vocab = load_vocab(vocab_file) #self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) #self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) # (liujiaxiang) comment useless code for a better diff code raise ValueError('albert use spm by default') self.inv_vocab = {v: k for k, v in self.vocab.items()} def tokenize(self, text): if self.sp_model: split_tokens = encode_pieces(self.sp_model, text, return_unicode=False) else: #split_tokens = [] #for token in self.basic_tokenizer.tokenize(text): # for sub_token in self.wordpiece_tokenizer.tokenize(token): # split_tokens.append(sub_token) # (liujiaxiang) comment useless code for a better diff code raise ValueError('albert use spm by default') return split_tokens def tokenize_for_pretrain(self, tok_list): import tok as tok_protocol text = " ".join([t.token for t in tok_list]) #split_tokens = encode_pieces(self.sp_model, text, return_unicode=True) split_tokens = encode_pieces(self.sp_model, text, return_unicode=False) ids = self.convert_tokens_to_ids(split_tokens) # +1 for head _ : 'hello world' -> ['_hello', '_world'] if not (len(preprocess_text(''.join(split_tokens))) == len(text) + 1): return None if len(split_tokens) != len(ids): return None sent_piece_tokens = [] i = 0 position_to_nth = self.inverse_index_str("_" + text) for t, id in zip(split_tokens, ids): t = t.decode('utf8') nth = position_to_nth[i] token = tok_list[nth] tok = tok_protocol.Tok() tok.token = t tok.id = id tok.bio = token.bio tok.origin = token.origin tok.appear = token.appear i += len(t) sent_piece_tokens.append(tok) return sent_piece_tokens def inverse_index_str(self, s): nth_tok = 0 position_to_nth = {} for i, c in enumerate(s): if c == " ": nth_tok += 1 position_to_nth[i] = nth_tok return position_to_nth # def convert_tokens_to_ids(self, tokens): # if self.sp_model: # #tf.logging.info("using sentence piece tokenzier.") # return [self.sp_model.PieceToId( # printable_text(token)) for token in tokens] # else: # return convert_by_vocab(self.vocab, tokens) def convert_tokens_to_ids(self, tokens): tokens_out = [] for i in tokens: item = i if item in self.vocab: tokens_out.append(self.vocab[item]) else: tokens_out.append(self.vocab['[UNK]']) return tokens_out def convert_ids_to_tokens(self, ids): if self.sp_model: #tf.logging.info("using sentence piece tokenzier.") return [self.sp_model.IdToPiece(id_) for id_ in ids] else: return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + six.ensure_str(substr) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat in ("Cc", "Cf"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False